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Thank you for the introduction
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Area-preserving parameterizations for spherical ellipses

Disk-shaped luminaries are ubiquitous and present in lots of everyday scenes.

Spotlights, traffic lights, flash-lights or ceil lights are some of the examples of
luminaries whose basic shape resembles a disk.
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We want to compute the incident radiance at a given surface point from a
disk-shaped luminaire.
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Here f is the contribution function, which takes into account the emission profile,
the medium attenuation and/or the geometric foreshortening. This function
gives the irradiance arriving from a given direction.
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We need to integrate f over the set of directions ΩD (solid angle) subtended by
the luminarie.

Since in most cases this integral does not have a closed form, we rely on
numerical methods, commonly Monte Carlo integration for computing this
integral.
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For this purpose, we would need to generate some samples, which we average.
However, how this samples are generated is crucial for reducing variance, and
we would like to generate such samples so that they are as approximated as
possible to the function being integrated.

In particular, what we would like is to compute such samples uniformly with
respect to the solid angle ΩD
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The most straightforward method is to generate samples over the surface of
the disk.
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However, this results in an distribution of sampling directions which are not
proportional to the sustained solid angle, and even worse, it introduces
singularities in the integrand.
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Recently, Gamito proposed to generate samples uniformly in the disk’s solid
angle, by sampling the quad bounding the disk using Ureña’s method , and
rejecting those which fall outside the disk.
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However, due to the samples rejection, the sampling pattern cannot have a
fixed size.

Therefore, the method does not preserve stratification of the samples in the
solid angle, or across sampling dimensions.
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Every possible disk (and more general quadrics like ellipses or ellipsoids),
when projected into the sphere, results in a spherical ellipse, which is defined
its semi-major arc α and a semi-minor arc β.

So, we are no longer on the domain of the disk, but on the domain of the
spherical ellipse.

Details about how to obtain the projection parameters in the paper.
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Therefore, our goal is to provide a direct mapping over the spherical ellipse’s
surface.
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Being area-preserving means that our map translates regions of certain area
in the unit square to regions on the spherical ellipse maintaining the
proportionality with respect to the complete surface area.
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Unfortunately, finding this mapping is not trivial. For that, we will use
Archimedes Box-Hat theorem, which as we will see will allow to simplify the
problem.

In the following, we will introduce it, and show how to use to define our two
area preserving mappings.
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Following the Hat-Box theorem, any differential of area on the unit sphere
(blue) can be radially projected to a corresponding differential of area (red) on
a surrounding cylinder.
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The Hat-Box theorem does not apply only to differential areas, but any region
Ω (blue) on the unit sphere can be radially projected to another region A (red)
on a surrounding cylinder

The mapping preserves the areas of both regions.

Thus, to obtain a point on the spherical region, we can uniformly sample inside
the cylindrical region and project back onto the sphere.
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The Box-Hat theorem holds for a bounding cylinder in any orientation.

Concretely, we are going to work with two particular cylindrical orientations:

• Aligned with the spherical ellipse’s x̂e, which is the canonical disposition
and is the basis of our parallel mapping.

• And also another aligned with the spherical ellipse’s ẑe, from which we’ll
develop our radial mapping.
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ŷe
ẑe
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So, we have two sampling domains: the first one defined as this angle phi,
while the second is uniformly sampled along this blue arc.
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We need to characterize the partial spherical surface covered by this angle.
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And for that purpose we use the Hat-Box theorem and we compute the area of
this region in the bounding cylinder.
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Which in the end means we have to integrate the line segments resulting of the
projection of each arc.

The second sampling domain can then sampled uniformly along the segment.
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This is the resulting mapping between the unit square and the spherical ellipse.
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We need an analytic expression to calculate this integral...
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Which after transformations results in the following analytical expression.

This equation unfortunately contains two elliptical integrals, one of the third
kind and one of the first kind. We will like to have something simpler.
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Now we start from the ẑe aligned radial projection.
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By exploiting the symmetry between the four quadrants of the spherical ellipse,
we are going to reduce the problem to uniformly sampling the first quadrant,
and later we’ll retranslate the samples to the remaining quadrants.
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Now our first sampling dimension is the radial angle, and the second is
uniformly sampled along the blue arc.
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We need to characterize the partial spherical surface covered by this angle.
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And for that purpose we use the Box-HAx theorem and we compute the area
of this region into the bounding cylinder.

Note that in this case we are actually integrating the complementary of the
area.
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This is the resulting map. Note that retranslating the samples to the remaining
quadrants introduces a singularity into the map.
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We redistribute the samples following the technique of Shirley and Chiu [1997]
for circle polar mapping before applying our map.
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Again, we want to find a close form for this expression.
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The resulting expression contains a single elliptical integral of the third kind, as
opposed to the the previous form.
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The resulting expression contains a single elliptical integral of the third kind, as
opposed to the the previous form.
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Now, let’s take a look at the resulting maps, from these sample points in the
unit square to the spherical ellipse.
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This is he first parallel mapping. Note that all samples are uniformly distributed
in the spherical ellipse, while the distrinution is not uniform on the disc on the
right.
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Our radial mappin with a discontinuity.
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And our continuous radial mapping.
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• Three area-preserving mappings for spherical ellipses, making
use of the Box-Hat theorem.

• Collateral: Novel expressions for the disk solid angle

• Simpler than previous approaches [Paxton 1959, Conway 2009],
involving only one/two elliptical integral
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Using the maps

We need to invert our solid angle expressions for sampling.
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Ω(φ)− ε1ΩD = 0.

Might become a bottleneck! → Tabulation
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The lack of a closed form forces us to result to numerical methods to generate
the samples.

We resort to tabulation.
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The lack of a closed form forces us to result to numerical methods to generate
the samples.

We resort to tabulation.

And now we are going to see some results of using our maps to sample
disk-shaped luminaries inside a Monte Carlo renderer.
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Now let’s take a look on the results of our sampling, compared against area
sampling and Gamito’s rejection technique. In this case, we have a simple
scene with a non-visible disc light source.
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The insets show the results in more detail. Note how our method gives better
results than Gamito’s.
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And now the same comparison in media...
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Note again that specially in media we are significantly better than area
sampling, while in this case Gamito’s performs only slightly worse than us, due
to ray sampling noise. However, as opposed to Gamito’s we still keep the
discrepancy of the samples.
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Here we see the convergence curves with respect to the number of samples
for both scenes.
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And the temporal cost. Note that these are very simple scenes, so the cost is
dominated by sampling. In more realistic scenes, cost from ray tracing or
shading will dominate.
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Conclusions

• We observe that the solid angle projection of certain quadrics is a
spherical ellipse.

• Using the Hat-Box theorem we can map a region on the sphere
surface by mapping the bounding cylinder’s lateral surface.

• Using both facts, we propose two new area-preserving mappings,
which allow stratified sampling of the spherical ellipse.

• And apply them as solid angle sampling procedures for disk area
lights inside a Monte Carlo renderer.
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Future work

• No analytical inversion:

• Which forces us to use either numerical inversion or tabulation.

• So far we have not found a spherical ellipse area expression which
does not involve elliptic integrals.

• It does not mean they don’t exist (good luck with that, though)

• Include importance sampling of emission profiles, the BSDF
and/or the cosine term on surfaces.

• Superellipses! Non-symmetric projection but...

47

Future work

• No analytical inversion:

• Which forces us to use either numerical inversion or tabulation.

• So far we have not found a spherical ellipse area expression which
does not involve elliptic integrals.

• It does not mean they don’t exist (good luck with that, though)

• Include importance sampling of emission profiles, the BSDF
and/or the cosine term on surfaces.

• Superellipses! Non-symmetric projection but...

Area-preserving parameterizations for spherical ellipses



Thanks!

47

Thanks!

Area-preserving parameterizations for spherical
ellipses



Tabulation

Instead of using numerical inversion, we precalculate a tabulated
triangle fan surrounding the spherical ellipse.

• Inverting the CDF becomes a cheap binary search.
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