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1 Introduction

Reverse tone mapping techniques aim at increasing the dynamic range of
legacy low dynamic range images, generally for viewing on high dynamic
range displays. Almost all existing reverse tone mapping operators (rTMOs)
follow the same strategy: they first compute some sort of expand map based
on detecting high-luminance areas of the LDR input images; pixels included
in such expand map are then aggressively expanded, while the rest are either
left unchanged or only slightly expanded. While this strategy works well for
correctly exposed images (where typically only a small percentage of pixels
are saturated), its performance decreases significantly when the input images
are overexposed to begin with, as was shown by Masia et al. [4].

In their work, the authors show that, for overexposed input content, a
global rTMO based on a simple gamma expansion outperforms more so-
phisticated algorithms, across a range of different overexposure levels. This
finding should help guide the design of future reverse tone mapping opera-
tors. The authors additionally propose an easy method to obtain a suitable
γ value for each image, based on computing its key value, which is an indi-
cator of whether the scene is subjectively dark or light.

This work extends the original publication by Masia et al. by further
investigating other image metrics and statistics, which can be used to com-
pute suitable γ values for the low dynamic range input images. We propose
new, robust models that are still straightforward to compute, while showing
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a higher correlation with the data gathered in the user studies [4]. Addi-
tionally, we note that Section 5 in the original paper incorrectly reported
that a linear regression of the form γ = 10.44k − 6.282 was used.

Thus, given the new statistical analysis in this work, different parametric
regressions are obtained together with various metrics, to assess how well
they fit the data. Both single variable regressions and more complex multi-
linear least squares fittings are computed. Data fitting by means of linear
least squares is performed for different subsets of image statistics, always
seeking to obtain the best trade-off between accuracy and simplicity of the
model.

2 Manually adjusted γ values

Table 1 includes the γ values for the image database which were manually
adjusted to obtain the subjective best depiction. Columns 1 to 4 indicate
increasing exposure, while rows correspond to the different scenes captured.
Figures 2 and 3 in the original publication [4] show the nine different scenes
plus the complete bracketed sequence for two of them, respectively. Within
each bracketed sequence, images present an increasing degree of overexpo-
sure.

Table 1: Manually adjusted γ values

Scene 1 2 3 4

Building 1.22 1.5 1.75 2.6
Lake 1.1 1.2 1.5 2.25
Sunset 1.1 1.35 1.4 1.75
Graffiti 1.2 1.35 1.5 1.75
Strawberries 1.22 1.35 1.55 1.9

3 Image Statistics

We compute below a series of statistics. For all of them, luminance is ob-
tained from sRGB linearized values [5]:

L = Y = 0.2126R+ 0.7152G+ 0.0722B, (1)

where L is thus normalized to [0..1].
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These statistics include both the arithmetic and the geometric mean
luminance (referred to as Lavg and LH , respectively). The arithmetic mean
is simply obtained by averaging the luminance value of all pixels (Lavg =
1/N

∑N
i=1 L(i), with N being the total number of pixels in the image); the

geometric mean, known to reduce the contribution of outliers, is obtained
as follows [2]:

LH = exp

(
1

N

N∑
i=1

log(L(i) + ε)

)
, (2)

where ε is a very small positive number to prevent singularities in black pix-
els. We additionally compute the logarithm of this quantity, simply logLH .

The key of the images is also obtained, using the following equation [1]:

k =
logLH − logLmin

logLmax − logLmin
. (3)

In this equation Lmax and Lmin are the maximum and minimum luminance
values, respectively, once a percentage of outlier pixels (both on the dark
and bright sides) has been eliminated. We calculate two key values, k5 and
k1, considering 5% or 1% of the pixels as outliers, respectively.

Additionally, both the median, Lmed, and a series of central moments, are
computed for the luminance of the images. These include variance VL (and
standard deviation σL), skewness (skewL) and kurtosis (kurtL). Finally,
we compute the percentage of overexposed pixels for each of the images,
defining overexposed pixels as those with L · 255 ≥ 254; we will refer to it
as pov.

Table 2 includes the values obtained for each of the aforementioned
statistics for the images of our dataset. Please note that the values for
the key of the image slightly differ from those appearing in the original pa-
per [4]. This values shown in Table 2 are the ones used for the regressions
explored in the following sections.

4 Fitting the data: multilinear regression

The straightforward initial step is to obtain a regression between γ and
one –and only one– of the image statistics previously computed, in order
to keep the model as simple as possible. Typically this would be a linear
regression, as suggested in [4], although in certain specific cases a better
fitting is obtained with an exponential or a potential regression. However,
none of the regressions obtained with a single variable had an R2 value
greater than 0.7, and were therefore discarded in search of a better fit.
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Since none of the single variable regressions provided a significantly high
R2 value we tried fitting the data with multilinear regressions, that is, linear
regressions with multiple variables as predictors. Restricting ourselves to
linear regressions was decided to keep the model as simple as possible; if
a good model could not be found assuming a linear relationship, we would
move on to more complex fittings. We initially used ordinary least squares to
do the fittings. This implies a series of assumptions over the errors, mainly
that they are normally distributed, with constant variance, and independent
of each other. It also implies that the independent variables are free of error,
or that their error is insignificant compared to the error of the dependent
variable. We tested and analyzed several different fittings, varying the subset
of image statistics that constituted the independent variables.

Once the type of model (i.e. linear) has been chosen, the problem which
arises when working with multiple predictors is knowing which of the pos-
sible predictors (i.e. the independent variables, in our case the calculated
image statistics) should be included in the model and which should be left
out.

The way in which we deal with this is performing F-tests over the pos-
sible models. Computing the R2 value or another goodness of fit metric
and comparing their values for both models is typically not enough. The
reason for this is that given two models, A and B, with pA and pB terms,
respectively, if pA > pB, model A will always fit the data at least as good
as model B. Thus, what has to be found out is if the addition of that extra
parameter(s) to model A gives a significantly better fitting; as mentioned,
we make use of F-statistics to assess that. Annex A describes the use of
F-tests in the construction of multiple variable models.

4.1 Building multiple variable models

A stepwise regression is used to build the possible multilinear models [6].
The idea is to start from an initial model, typically with the single variable
showing the highest correlation with the data. Then, the steps described
below are performed iteratively until no more variables can be added.

• Step 1: Test all variables independently with partial F-statistics. The
variable with the lowest p-value is added to the model (as long as the
p-value is lower than the significance level, p-value < α). This step is
repeated until no more variables can be added.

• Step 2: Since the addition of a new variable can cause a previously
introduced value to be non-significant, a partial F-statistic is computed
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for each variable currently in the model as if it were the one introduced
in the last place. The one with the largest p-value is removed (as long
as the p-value is larger than twice the significance level, p-value > 2α),
and a new iteration begins with Step 1.

The process ends when, in Step 2, no variables are removed because there
are no variables whose p-value is larger than the significance level (which
implies that no variables can be added either). Please note that even though
some combinations of variables may not have much sense (e.g. having k5 and
k1 both included in a regression) we initially make exhaustive tests without
taking into consideration these constraints, which will be evaluated over the
final model selected.

It is clear from the procedure above that the initial model selected and
the order in which variables are selected to be introduced or removed from
the model determines the final model reached. For this reason, we repeated
the algorithm for stepwise regression starting from every possible single vari-
able initial model. This yields different final models, for which a series of
metrics are computed in order to evaluate the accuracy of the fitting. In
particular we compute the RMSE and the overall F-statistic for each model
obtained (see Annex B for a definition of these parameters). Based on them
we select the best model, which yields the following equation for the regres-
sion:

γ = 3.8872 + 0.3752logLH − 2.9941k1 + 0.0160pov. (4)

Figure 1 shows the observed γ values against the γ values predicted by this
model. Additionally, it compiles different metrics assessing the accuracy of
the previous regression, including R2 and R̃2 (see Annex B for a definition
of R̃2) as well as the already mentioned RMSE and F-statistic with its
associated p-value.

There is another possible model resulting from the stepwise fitting pro-
cess which involves Lmed and LH and yields a lower RMSE than the model
given by Equation 4. However, when using this model three observations
are classified as outliers, which we found unjustified given the slight increase
in performance.

4.2 Checking for outliers

The procedure described in Section 4.1 yields several different models. How-
ever, when performing an outlier analysis over the residuals of these models,
there are two observations which systematically appear as outliers in the fit-
ted models (the 95% confidence interval for the mean of their residuals does

6



RMSE = 0.2208

F-stat = 14.1072

p-value = 9.3134·10-5

R2 = 0.7257

Adjusted R2 = 0.6743

Figure 1: Predictive accuracy of the regression shown in Equation 4. The
x-axis shows observed γ values, while the y-axis depicts the values predicted
by the regression. The cyan line shows the quadrant bisection (i.e. y=x).

not include zero). We therefore chose to remove these two values (Building04
and Lake04 ) from the data and re-do the multilinear regression fitting.

A detailed summary of the different models obtained using stepwise re-
gression on the data without outliers is shown in Table 3. The first column
shows the variable included in the initial model, the second column the
variables included in the final model, and the third column their associated
p-values. The p-value is that of the variable in the final model (not neces-
sarily equal to the p-value at the point in which it was introduced). Finally,
the last columns show the RMSE and the overall F-statistic with its associ-
ated p-value for that particular model, as a measure of the accuracy of the
fitting.

4.3 Selecting the best multilinear model

According to Table 3, the model which yields the best fit to the data –i.e.
the one with the lowest RMSE, and with the lowest p-value in the overall
F-test– is the one given by the following equation:

γ = 0.9855 + 2.8972LH − 0.8232Lmed + 0.2734skewL − 0.0898kurtL (5)
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Table 3: Different models obtained by stepwise regression.

Variable in
initial model

Variables in
final model

p-value RMSE
F

(p-value·105)

Lavg Lavg 6.3445 · 10−7 0.1121
62.6831
(0.0635)

LH
LH 9.3551 · 10−6

0.0810
67.9410
(0.0030)

Lmed 7.9268 · 10−4

logLH
logLH 1.1925 · 10−3

0.0933
49.3436
(0.0253)

pov 5.3205 · 10−3

k5 Lavg 6.3445 · 10−7 0.1121
62.6831
(0.0635)

k1 Lavg 6.3445 · 10−7 0.1121
62.6831
(0.0635)

Lmed
LH 9.3551 · 10−6

0.0810
67.9410
(0.0030)

Lmed 7.9268 · 10−4

VL
LH 9.3551 · 10−6

0.0810
67.9410
(0.0030)

Lmed 7.9268 · 10−4

σL
LH 9.3551 · 10−6

0.0810
67.9410
(0.0030)

Lmed 7.9268 · 10−4

skewL Lavg 6.3445 · 10−7 0.1121
62.6831
(0.0635)

kurtL

LH 2.7642 · 10−6

0.0664
52.8833
(0.0065)

Lmed 6.7751 · 10−3

skewL 1.6002 · 10−2

kurtL 1.0849 · 10−2

pov
logLH 1.1925 · 10−3

0.0933
49.3436
(0.0253)

pov 5.3205 · 10−3

None Lavg 6.3445 · 10−7 0.1121
62.6831
(0.0635)

8



The goodness of fit of this regression can be measured through different
metrics. Some of them, such as the RMSE and the F-statistic, have already
been included in Table 3. Nevertheless, Figure 2 compiles them together
with other metrics, namely R2 and R̃2. To further illustrate the predictive
accuracy of our model, Figure 2 shows the observed γ values in the x-axis,
against the γ values predicted by our model.

RMSE = 0.0664

F-stat = 52.8833

p-value = 6.4567·10-8

R2 = 0.9421

Adjusted R2 = 0.9243

Figure 2: Predictive accuracy of the regression shown in Equation 5. The
x-axis shows observed γ values, while the y-axis depicts the values predicted
by the regression. The cyan line shows the quadrant bisection.

4.4 Robust regression

An alternative to eliminating the observations regarded as outliers as done
in Sections 4.2 and 4.3 would be to retain all the observed data but weight
their influence when computing the regression. To do this, we perform a
new regression with the same predictors as in Equation 4 using iteratively
reweighted least squares. The weight function used is a bisquare function.
The new regression is thus given by the following equation:

γ = 2.4379 + 0.2319logLH − 1.1228k1 + 0.0085pov. (6)

Figure 3 shows the predictive accuracy of the model obtained by robust
regression compared to Ordinary Least Squares, both with all the observed
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data (left) and after outlier removal (right). Additionally, if we compute
a robust RMSE estimate for this last regression [3], we obtain an estimate
of 0.0962 (while estimates for the previous ones, OLS with and without
oultiers, were 0.2208 and 0.0664 respectively).

Figure 3: Predictive accuracy of the model obtained by robust regression
against the ones obtained by ordinary least squares, with all the observed
data (left) and after outlier removal (right). The abscissa show observed γ
values, while the y-axes depict the values predicted by the regression. The
cyan lines mark the quadrant bisection.
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A F-tests for assessing the appropriateness of adding
new predictors to a model

An F-test is typically performed to decide whether or not a certain null
hypothesis can be rejected. To do this, a test statistic (the F-statistic) is
needed which under the null hypothesis follows an F-distribution. In our
case, the null hypothesis is that, given two models, A and B, with a number
of predictors pA and pB (pA > pB), the two models fit equally well the data.
The F-statistic is then given by:

FpA−pB ,n−pA =
(SSB − SSA)/(pA − pB)

SSA/(n− pA)
, (7)

where SSi, i = {A,B}, is the sum of squared residuals of model i, and n
is the number of data values [6]. It must be noted that in Equation 7, and
throughout the document, pi as a measure of the number of terms in the
regression includes the constant term (i.e. the intercept).

For the particular case of creating model A by adding one variable to a
model B that has p terms, and expressing the formula in terms of R2, the
F-statistic becomes:

F1,n−p−1 =
R2

A −R2
B

(1−R2
A)/(n− p− 1)

(8)
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As it is well known, given a value for F in an F-test, the p-value is the
probability of obtaining a value as extreme as the F obtained, assuming that
the null hypothesis is true. As a consequence, the null hypothesis is typically
rejected if the p-value is lower than the significance level alpha (which, in
this work, will have the usual value of α = 0.05).

B Goodness of fit in multilinear regressions

This Annex includes the description of a series of metrics which are typically
used in regression analysis to measure the accuracy of the fitting of a certain
model.

RMSE. For a multilinear regression, RMSE is computed as shown in
Equation 9, where Yi are the observed data (i.e. the given γ values) and Ŷi
the data predicted by the model.

RMSE =

√√√√ n∑
i=1

(Yi − Ŷi)2/(n− p), (9)

where, n is the data size and p the number of terms in the regression. Please
recall that in this formulation the intercept is included in p. This metric
provides an intuition on the error we would incur in when using a certain
regression to estimate the value of a variable.

Overall F-statistic. The overall F-statistic is simply an F-test in which
the null hypothesis is that the data can be explained by a constant (which
would be the mean of the observed data), versus the hypothesis that the
data can be explained by the selected model. Therefore, a high F-statistic
and, specially, a low associated p-value indicate that the hypothesis that our
model explains the data (vs. the hypothesis that a constant explains them)
is clearly correct.

R2 and adjusted R2. Typically used to assess how well the values pre-
dicted by a model will adjust to the real values, in the case of linear re-
gressions R2 is simply the square of the correlation coefficient between the
observed and the predicted data.

However, in the case of multilinear regression, the R2 value will always
increase as new variables are added to the model. For this reason some-
times the adjusted R2 is used, which corrects for the number of explanatory
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variables in the model. As a result, the adjusted R2 value will only increase
if the new term improves the regression more than would be expected by
chance. The adjusted R2 value is usually denoted by R̃2 and computed as
follows:

R̃2 = 1− (1−R2)
n− 1

n− p
(10)

where, again, n is the data size and p the number of terms in the regression.
Please recall that in this formulation the intercept is included in p. It is
well-known that the higher the R2 and the adjusted R2 values, the higher
the correlation between the values predicted by the model and the values
actually observed.
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