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Abstract We present an alternative interface that allows users to perceive new sensa-
tions in virtual environments. Gaze-based interaction in virtual environments creates
the feeling of controlling objects with the mind, arguably translating into a more in-
tense immersion sensation. Additionally, it is also free of some of the most cumbersome
aspects of interacting in virtual worlds. By incorporating a real-time physics engine,
the sensation of moving something real is further accentuated.

We also describe various simple yet effective techniques that allow eyetracking devices
to enhance the three-dimensional visualization capabilities of current displays. Some
of these techniques have the additional advantage of freeing the mouse from most
navigation tasks.

This work focuses on the study of existing techniques, a detailed description of the im-
plemented interface and the evaluation (both objective and subjective) of the interface.
Given that appropriate filtering of the data from the eye tracker used is a key aspect
for the correct functioning of the interface, we will also discuss that aspect in depth.
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1 Introduction

The usual interface in nowadays computers, based in WIMP environments (Win-
dows, Icons, Menus, Pointer) allows for a very limited sense of immersion. Re-
cently, new devices have been introduced in the market, which aim at overcoming
some of the current limitations of WIMP. A clear example is the successful wire-
less Nintendo Wii remote, capable of recognizing a limited subset of the players’
movements, or EyeToy, a camera-based interaction device for video games which
captures an approximation of the users’ actions.

In this paper we explore the use of eye tracking devices creating a gaze-based
control system that allows the user to interact in the virtual environment in a
different way, allowing for a greater sense of immersion in virtual environments
due to its ease of use.

1.1 State of the art

Previous work describes and analyzes user interfaces whose only input is the
user’s gaze [Jacob 1990,Salvucei and Anderson 2000,Ware and Mikaelian 1987].
In those systems, it is possible to select objects, move them or display information
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about them, within the context of a conventional user interface. Other studies
[Sibert and Jacob 2000a] indicate that gaze-based interfaces can indeed be more
efficient than traditional mouse- or pointer-based ones.

The work by Tanriverdi and Jacob [Tanriverdi and Jacob 2000b] introduces
the selection of objects by sight in virtual environments, and it is compared with
a selection mechanism based on a hand-tracking device. Although their results
show that gaze-based selection is more efficient, posterior studies reveal that this
efficiency depends also on the ray casting algorithm used [Cournia et al. 2003].

Smith and Graham studied the integration of gaze-based interfaces in already
existing games of diverse nature [Smith and Graham 2006]. The results show
that efficiency drops with respect to a more traditional mouse-based system.
However, it is noted that the users’ satisfaction increases with gaze-based devices
when this is used for the control of avatars. This kind of interfaces in first-
person games has also been analyzed by [Isokoski and Martin 2006]. The results
confirm that efficiency drops even for this type of games, but it is pointed out
that performance when using an eye-tracking device increases with training, and
thus similarly-trained users in both types of interfaces should be used for a more
fair comparison.

2 Resources used

The Laboratorio Aragonés de Usabilidad (Usability Laboratory of Aragón) is a
research facility for the development, analysis and optimization of new human-
computer interaction techniques. It has provided all the necessary resources for
the implementation and evaluation of the work developed in this paper.

2.1 Hardware

To obtain the point in space observed by the user, it is necessary specific, dedi-
cated hardware capable of detecting eye gaze in real time. We have used a T60
eye tracking system, developed by Tobii, which is made up of a conventional mon-
itor with tracking sensors at the bottom. A typical use of this kind of devices is
to gather statistics of user interfaces, allowing for an objective evaluation of such
interfaces. Other uses of the technology include medicine or psychology. In this
work we explore the use of eye-tracking devices as human-computer interfaces
within virtual worlds.

2.2 Software

The functional scheme of the system can be broken down into three parts: cap-
ture, update and display.
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For capture, we have used the in-house software developed by Tobii, Tobii
Eyetracker SDK, which consists on a series of libraries that allow for the acqui-
sition of the data from the eye tracker. The update of the virtual world requires
a real time physics engine to simulate the correct behavior of rigid solids under
forces such as gravity or the user’s input to the system. We have used the Simple
Physics Engine [SPE] library, which lets us create realistic simulations through
a simple programmer’s user interface. Lastly, Direct3D has been used for real
time display.

3 New interaction paradigms

The goal of the proposed system is to incorporate actions that let the user al-
ter the virtual world. It is similar in spirit to the work by Jacob [Jacob 1990],
although we extend it to the virtual reality realm. In this realm, previous works
contemplate the observation of the worlds, but not their modification [Tanriverdi
and Jacob 2000b], so the user can only select objects. Contrary to other sim-
ilar cases [Smith and Graham 2006], we have designed a system from scratch,
adapting the environment to the interface, and not the other way around. A key
component that ties together the scene being displayed and the user’s gaze is the
built-in physics engine [Yeh et al. 2006]; this differentiating element helps the
user believe that he is actually moving something real, as opposed to abstract
object representations.

We call the system we present here EyeMotion, and it is made up of a fixed
ground plane where a series of dice are thrown onto by gravity (Figure 1). The
color of the objects change to green while observed by the user, so she knows
over which object subsequent action will be taken. For this, there is a series of
tools: if the user presses the right mouse button, the event triggers an action,
which can be either grab, push or shoot the object (depending on the selected
tool). Tools are selected by regular mouse interaction with icons on the screen
menu. To change the point of view, we again rely on standard mouse-driven 3D
navigation in order not to introduce too many new interaction paradigms.

Another feature in EyeMotion is the possibility of showing the point in the
scene being observed by mimicking a laser pointer. We included this option
given that knowing the output of the eye tracker proved to be very useful in
cases where it was not particularly precise (a problem inherent to eye tracking
technology that must be accounted for). Seeing the laser pointer, the user can
make small adjustments based on its position.

3.1 Select

The problem of selecting an object in gaze-based system is known as the Midas
touch problem. According to the Greek mythology, Midas would transform in
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Figure 1: EyeMotion

gold everything he touched: very similarly, unless specific measures are taken,
every object in the scene would be selected just by looking at it. To solve this
problem, there are three different possibilities:

– Use blinks.

– Build some latency into the selection system (dwell time [Sibert and Jacob
2000a]), which activates selection only after staring at an object for a given
period of time.

– Use hardware, such as buttons to begin/end actions.

We ruled out blinking since we believe is not a very natural way to activate
tools. Plus, it can tire the user. Building latency would not adapt to all the dif-
ferent tools we wished to implement; more precisely, it would not be compatible
with the push tool, since that tool would need a button to begin/end such ac-
tion. Thus, we opted for the simplest solution, which is to use a button to make
the selected tool active while it is being pushed, and inactive when released.

For selection, we use ray casting (Figure 2), which allows to detect the nearest
object to the camera from any given point of view.

3.2 Grab

The grabbing tool allows the user to grab, drag and drop objects anywhere in
the scene. The procedure consists on looking at the object one wishes to move,
pushing the action button (after selecting the grabbing tool), looking at the
new destination for the object and releasing the button. The physics engine will
simulate the necessary rigid body dynamics to make the movement believable.
The object can actually be placed anywhere in the scene, given that the view
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Figure 2: Object selection by ray casting

point can be changed while the object is being grabbed. To accomplish this task,
the user would need to grab the object with the action button in order to move
the object with the eyes, and then push the camera button to move the camera
with the mouse. Both buttons should be pressed simultaneously until the user
finishes the grab.

3.3 Push

The push tool is used to move objects without actually looking at them previ-
ously to select them. Once the tool is active, objects intersecting the gaze path
are pushed out of the way according to the gaze direction. This tool allows for
a basic but comfortable way of moving objects, since it does not require the
previous selection.

In general, for the eyes to move smoothly throughout a scene, it is necessary
that they follow a moving target [Jacob 1990]. Thus, the push tool as it is
designed may seem not very appropriate in an eye tracker context; however, once
an object starts moving it is possible to continue and steer its movement by gaze
following. Additionally, it also possible to filter eye movement to smoothen the
results, as we will describe in the following section.

3.4 Shoot

Our last interaction tool consists on shooting objects following gaze direction.
To shoot an object, the user looks at the object and pushes the action button,
after which the object is shot in the direction given by the normal to the plane
of visualization.

4 Data filtering

To be able to clearly see an object, we need to move the eye so that said object
falls in the foveal region. This is the central part of the retina, and thanks to
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its high concentration of color-sensitive photoreceptors (cones) it allows us to
observe the region of interest with the maximum resolution and detail our visual
system permits. The movements that allow the object to fall in the fovea are
called saccades. After each saccade the eye is said to be in a fixation state, during
which a series of involuntary movements (called micro saccades) alter the exact
gaze direction around the point of interest, normally in an angle less than one
degree [Jacob 1990].

This involuntary movements may cause gaze to fall outside the intended
region of interest (object), without the observer being conscious about it. That
may have the undesirable consequence that the system selects and deselects
the observed object, making the interaction all the more difficult. To solve this
problem, Jacob [Jacob 1990] proposes to detect only fixations, and to take into
account only the gaze direction the moment a fixation was detected. The down
side of this approach is that continuity in the eye cursor is lost, which may be
confusing for the user.

In [Miniotas and Špakov 2004], a further step is proposed. After detecting a
fixation within an object’s area, this is selected and a time counter is initiated.
Once selected, and while the time counter has not yet finished, small movements
will not deselect it, even though gaze may fall outside the object. Each time that
gaze falls back again on the object, the timer is reset, thus allowing for a more
stable selection.

For our system, we opt to extend the approach in [Miniotas and Špakov 2004],
by using a filter to stabilize the position of the cursor. Since the deviations caused
by micro saccades can be described as a random walk, their mean value is zero.
Thus, it make sense to measure the data to smooth the detected movement as
follows: for each sample k, we obtain the weighted average with the n−1 previous
samples:

p′k =
min(k,n)∑

i=1

wipk−i+1 (1)

We use a Gaussian as weighting function:

f(x) = e−
x2

2σ2 (2)

which must be normalized to preserve scale:

wi =
f(i)∑n
i=1 f(i)

(3)

As Figure 3, left, shows, the curve created by the weighting factors is made up
of three distinct parts: acceleration, constant velocity and deceleration. Figure 3,
right, shows the effect of filtering a series of positions with white noise using unit
weights (arithmetic mean) and Gaussian-based weights. It can be seen how the
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Figure 3: Left: weights used for obtaining the means (σ2 = 65). Right: filtered
positions using unit weights and Gaussian-based weights.

Gaussian transforms the positions by giving them a faster acceleration, and thus
it introduces less delay between the original and the filtered positions. On the
other hand, the deceleration from the Gaussian is smoother but faster that using
unit weights.

By using the timer technique [Miniotas and Špakov 2004] we can stabilize
the selection, thus allowing for a better interaction in those cases where the
eye tracker precision does not suffice, given that it is not necessary to look
inside an object to select it. The filtering presented in this section smoothens
sudden eye movements, thus stabilizing the eye cursor. This has proved to be a
simple yet powerful solution to achieve a satisfactory interaction, although more
thoroughful tests may need to be performed.

5 Virtual window

Visualizing three-dimensional scenes using a monitor that can only show flat
representations obviously diminishes the sensation of being manipulating a 3D
world. Altering the view point with respect to the screen will not change the
scene, creating the undesirable feeling of being looking at a static picture. In
this section we present the use of the eye tracker as a means to enhance 3D
depth using a standard monitor.

To obtain gaze direction, the eye tracker needs to previously locate the po-
sition of the eyes in 3D space. It is usually easy to query the eye tracker for
those positions through the programming interface (being also the case for the
eye tracker used in this work). Once obtained, we can thus position the observer
with respect to the screen and make several corrections to the location of the
virtual camera from which the world is rendered. Other devices could also be
used for this purpose, as in [Kinoshita et al. 2006].
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Figure 4: Left: model viewed from the front. Top right: model viewed from the
right, as is displayed in the screen. Bottom right: distortion of the top right
model is corrected if we look at it from the right side of the display.

5.1 Camera panning with adjusted frustum

Looking through a real window and craning sideways we see objects under a
different perspective. By leveraging the fact that we know the user’s position with
respect to the screen, we can move the camera proportionally (or identically) to
the user’s movement. This creates the illusion of looking through a real window,
as opposed to a flat screen (Figure 4). We have two different possibilities when
moving the camera:

– To take into consideration the scale of the scene, size of the monitor and
distance from the user to the screen to realistically alter the view point.

– To exaggerate or attenuate the camera’s movement.

Choosing one over the other depends on factors like personal preferences
or the specific goal of the application. In our case, since using the eye tracker
to detect the head’s position somewhat limits its range of movement, we have
adjusted the factor between the real user’s movement and the camera’s, based on
a value determined experimentally. The following simple equation will transform
the input positions into the appropriate values:

xs = x ∗ s (4)

ys = y ∗ s
where x and y are the measured eye positions, normalized to the −1..1 range,
and s is the desired scale factor.

Figure 5 describes the process required to achieve this effect. First, the orig-
inal camera (marked in red) is translated to the correct position (marked in
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Figure 5: Top view of the required transformations to perform the camera cor-
rection. The order is red to green, then green to blue.

green), based on the position of user eyes. Then the view frustum is skewed with
the purpose of keeping the focused model in the center of the projection. In
order to accomplish those tasks we need to alter both the view and projection
matrices.

Using a look-at type matrix, we can position the camera in the green position
as follows:

eye = (xs,−ys,−d) (5)

at = (xs,−ys, 0)

up = (0, 1, 0)

where xs and ys are the scaled eye positions and d is the distance from the
camera to the focused object in the virtual world.

For the focused model to maintain its centered position after the camera
translation, we need to move the frustum center by the amount pictured in
Figure 5 as x′s and the reciprocal measure y′s. By using triangle similarity we
can find its value as follows:

x′s = xs ∗ zn/d (6)

y′s = ys ∗ zn/d

where zn define the distance to the near clipping plane, as depicted in Figure 5.
The skewed blue frustum can be then defined by the following equation:

(l′, r′, b′, t′) = (l − x′s, r − x′s, b+ y′s, t+ y′s) (7)
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where l, r, b and t defines the left, right, bottom and top clipping planes of the
standard frustum that points forward.

Those values could be passed to the OpenGL function glFrustum or DirectX
D3DXMatrixPerspectiveOffCenterLH in order to build the projection matrix.

5.2 Camera panning with fixed frustum

In this case we move the camera proportionally to the user’s movement, keeping
the frustum fixed at its default form. We extend the illusion of being in front
of a window, and allow the user to peek out through it while navigating the
virtual environment. Since we have the position of both eyes, we can use the
head’s orientation to perform a matching camera roll. In a first-person game, this
amounts to substituting the keys that usually control this type of movements for
a more natural interface, thus enhancing the perception of immersion (Figure 6,
left). The following equations define the necessary look-at matrix:

eye = (xs,−ys,−d) (8)

at = (xs,−ys, 0)

up = (sin(φ), cos(φ), 0)

where φ is the angle between the x axis and the vector formed by the position
of the left and right eyes.

5.3 Camera rotation

The limitation of the first technique is that, no matter how much the factor
between the user’s and the camera’s movements is exaggerated, this will never
be rotated more than 90 degrees, given that it moves on a plane parallel to
the visualization plane. By changing the panning motion for a rotation, and
modulating the angle based on the position of the user, we can visualize the
world under any angle. This could be very useful in a 3D modeling package,
since it would free the mouse from this task so that it could be used for modeling
only. The rotating angle (radians) is given by:

ψ = x ∗ π (9)

θ = y ∗ π
Notice how in this case it is more convenient to use rotation matrices instead

of a look-at matrix, concatenating multiplications as follows:

Mview = Mψ ∗Mθ ∗Mt (10)

where Mψ denotes a rotation around the y axis of ψ radians, Mθ denotes a
rotation around the x axis of θ radians and Mt is the translation matrix for the
camera that places it at the proper distance.
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6 Analysis

Six employees from the Usability Lab offered to take part in the tests. All of
them were familiar with the eye tracker, and had used it previously in inter-
face evaluation tasks by running the software provided by the vendor. However,
knowledge of this software is independent of the system designed, and thus can-
not be accounted for as previous knowledge specific to the tests. For calibration,
they were asked to stay at approximately one meter from the eye tracker; five ref-
erence points were used. One subject was discarded due to calibration problems.
The rest (four men and one woman) completed the tests satisfactorily.

6.1 Methodology

Participants had unlimited time to train in the use of the tools in both interface
devices (mouse and eye tracker). The virtual window capabilities of the program
were disabled during the tests; we believe that a more appropriate way of testing
them would be within a real-world application (like a video game) which falls out
of the scope of this paper. They were advised in how to undertake the proposed
tasks. After training, each participant had a two-hour rest period before the tests
started.

In each test, each participant completes three times each task, done on a
special table with three numbered zones (Figure 6, right). The zones were de-
signed to force the participants to navigate throughout the virtual environment
to achieve the tasks. They are sized differently as well, to be able to measure
actions which require different precision levels. They are placed at the corners
so that the participant must try not to throw the dice outside the table. At the
beginning of each task, the camera is placed in a default position, and 25 dice
fall over the table. The tasks consist on:

– Grab: the participant must move 6 dice to the three zones, as many dice as
the number signaling each zone (1,2,3).

– Push: the participant must push three dice to the red zone.

– Shoot: the participant must shoot all 25 dice out of the table.

6.2 Results and conclusions

We divide the results of our study in two categories:

– Objective measures, which allow us to compare the efficiency and training
process between the mouse and the eye tracker interfaces (Figure 7).
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Figure 6: Left: screenshot of Call of Duty 4 that exemplify the possible usage of
the eye tracked camera panning in a video game. Right: numbered table for the
tasks.

Figure 7: Results of the objective analysis

Table 1: Results of the subjective analysis per tool. ET (eye tracker). M (mouse)

Grab (%) Push (%) Shoot (%)
Question ET M ET M ET M
Which method did you enjoy the most? 100 0 40 60 100 0
Which method seemed easier to learn? 20 80 0 100 20 80
Which method seemed easier to use? 60 40 20 80 60 40
Which method better enhances immersion? 100 0 100 0 80 20
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Table 2: Results of the subjective general analysis. ET (eye tracker). M (mouse)

Question ET (%) M (%)
Did you feel fatigue using it? 80 20
Do you think it is precise enough? 40 80
Do you think it would be useful in VR environments? 100 100

– Subjective measures, which inform us of the users’ satisfaction for both in-
terfaces for each tool (Table 1) and overall (Table 2).

The objective results suggest that eye tracking technology is still not precise
enough to allow a user to select distant objects: the user is forced to track the
virtual camera to get closer to it, negatively affecting the performance of gaze-
based interaction. In fact, for some users the error could be as large as one
centimeter, hampering selection even at close distances. As Figure 7, left, shows,
the grab and push tools have significantly bigger standard deviation than the
shot tool. In the case of the first tool, the reasons seems to be related with the
intensive viewport manipulations required by the test –which were performed
differently by the users–, and in the latter tool, with the fact that it was the first
time the users cope with this way of interaction, which lead to very different
adaptations to the tool.

On the other hand, training is sensibly better performed using the eye tracker,
taking into account the number of tries versus execution time. This can be due
to the fact that the participants were accustomed to using the mouse in their
every day work, which somehow counts as previous training. This is obviously
not the case for eye trackers.

Subjectively, the eye tracker interface seems to be more enjoyable than its
mouse counterpart. As for the sense of immersion, the eye tracker performed
significantly better, thus confirming the results presented by Smith and Graham
[Smith and Graham 2006]. The push tool received the most negative evaluation,
mainly because it is tricky to perform correctly, requiring a tough learning before
it can be used properly. However, once learned, it is the tool that performed best
when used with the eye tracker in comparation with its performance when using
the mouse. This can be explained by taking into account that it is the only tool
that is not usually required by common operating system actions, and hence
there is no previous training in its usage.

We believe that the use of gaze-based interfaces in physically-based appli-
cations could help handicapped people interact with objects in virtual environ-
ments. Possible applications range from entertainment to even rehabilitation.

As future work, precision seems to be the biggest issue. This could be tackled
from two different angles: either improving tracking hardware, or developing
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smart algorithms capable of deciding what the user is really looking at.
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