Evaluation of Reverse Tone Mapping Through Varying Exposure Conditions

Belen Masia! Sandra Agustin!

'Universidad de Zaragoza

Roland W. Fleming?

?Max Planck Institute for Biological Cybernetics

Olga Sorkine?3 Diego Gutierrez!*

3New York University

“Instituto de Investigacion en Ingenieria de Aragén (I3A)

Abstract

Most existing image content has low dynamic range (LDR), which
necessitates effective methods to display such legacy content on
high dynamic range (HDR) devices. Reverse tone mapping oper-
ators (rTMOs) aim to take LDR content as input and adjust the
contrast intelligently to yield output that recreates the HDR expe-
rience. In this paper we show that current rTMO approaches fall
short when the input image is not exposed properly. More specifi-
cally, we report a series of perceptual experiments using a Bright-
side HDR display and show that, while existing rTMOs perform
well for under-exposed input data, the perceived quality degrades
substantially with over-exposure, to the extent that in some cases
subjects prefer the LDR originals to images that have been treated
with rTMOs. We show that, in these cases, a simple rTMO based on
gamma expansion avoids the errors introduced by other methods,
and propose a method to automatically set a suitable gamma value
for each image, based on the image key and empirical data. We
validate the results both by means of perceptual experiments and
using a recent image quality metric, and show that this approach
enhances visible details without causing artifacts in incorrectly-
exposed regions. Additionally, we perform another set of experi-
ments which suggest that spatial artifacts introduced by rTMOs are
more disturbing than inaccuracies in the expanded intensities. To-
gether, these findings suggest that when the quality of the input data
is unknown, reverse tone mapping should be handled with simple,
non-aggressive methods to achieve the desired effect.

CR Categories: 1.3.7 [Computing Methodologies]: Computer
Graphics—; 1.4.10 [Computing Methodologies]: Image Processing
and Computer Vision—Image Representation

Keywords: Tone management, high dynamic range imaging, im-
age processing, perception, psychophysics, human visual system

1 Introduction

High dynamic range display devices are becoming increasingly
common [Seetzen et al. 2004], yet very large amount of existing
low dynamic range legacy content and prevalence of 8-bit photog-
raphy persist. This presents us with the problem of reverse tone
mapping. The aim of reverse tone mapping operators (rTMOs) is
to endow low dynamic range (LDR) imagery with the appearance
of a higher dynamic range without introducing objectionable arti-
facts. Ideally, an rTMO should take a standard LDR image as input
and reconstruct as accurately as possible the true luminance values
of the original scene. As depicted in Figure 1, this is an ill-posed
problem. For most scenes and imaging devices, the image data

is irreversibly distorted by unknown nonlinearities, sensor noise,
lens flare, blooming, and perhaps most importantly, sensor satura-
tion, which clips high intensities to a constant value. Reverse tone
mappers must somehow reconstruct the missing data, or boost the
contrast in a way that does not cause the clipped regions to appear
visually unpleasant.

Existing rTMOs tackle this ill-posed problem in different ways,
leading them to succeed and fail in different conditions. For exam-
ple, some reverse tone mapping strategies may handle small clipped
highlights well, but cause large saturated regions to appear unnat-
ural. Conversely, other rTMOs may avoid introducing artifacts in
over-exposed conditions, but fail to enhance under-exposed images
sufficiently. The key is to understand which strategies produce the
best possible visual experience, for which a number of user studies
have recently been conducted [Yoshida et al. 2006; Seetzen et al.
2006; Akyiiz et al. 2007; Banterle et al. 2009b]. These experiments
have yielded many valuable insights which may guide future rTMO
and even HDR display design. However, they have been applied
only to subjectively correctly exposed images, usually with knowl-
edge of the dynamic range of the original, real-world scene. A key
challenge in rTMO design is how to handle non-optimal LDR con-
tent, particularly images that are incorrectly exposed.

Our research is dedicated to finding non-intrusive ways to take ad-
vantage of the higher dynamic range of the display medium, irre-
spective of the dynamic range of the original image. Reverse tone
mapping also sheds light on a general problem in signal process-
ing: taking partial, distorted or corrupted data and reconstructing
the original as faithfully as possible. Here our quality criterion is
perceptual faithfulness rather than physical accuracy.

The vast amount of LDR legacy content spans a large range of ex-
posures. Under- or over-exposure may be due to different reasons,
including bad choices by the photographer or pure artistic inten-
tions. Legacy professional material may have been shot to make
the most appropriate use of the dynamic range available at the time,
very different from what is currently available. Additionally, the
information about the dynamic range of the real scene is typically
not recorded. It is therefore crucial to extend previous studies by
taking into consideration varying exposure conditions for a set of
images without additional information.

We have performed a series of psychophysical studies assessing
how rTMOs handle images across a wide range of exposure levels.
We have found that, while existing rTMOs perform sufficiently well
for dimmer (under-exposed) images, their performance systemati-
cally decreases for brighter (over-exposed) input images. This sug-
gests that there is a need for an r'TM method that effectively deals
with over-exposed content. We show that simply boosting the dy-
namic range by means of an adaptive  curve achieves good results
that outperform the current rTMOs, and propose a simple method
to obtain a suitable value of - for each image.

We additionally observe that artifacts produced by some rTMOs are
also visible in low dynamic range renditions of the images. This is
because many artifacts are not simply due to inappropriate intensity
levels, but also have a spatial component. We perform a second
user study to shed light on which type of inaccuracies introduced



by reverse tone mapping most hamper our perception of the final
image. This information can further help future rTMO design.

2 Previous Work

Reverse tone mapping. Dynamic range expansion, along with
related subsequent problems such as contour artifacts, has been ini-
tially addressed by bit-depth extension techniques [Daly and Feng
2003] and decontouring methods [Daly and Feng 2004]. How-
ever, these techniques are designed for extension to bit-depths much
lower than that of HDR displays. More recently, a few works have
looked at the problem of reverse tone mapping for the display of
LDR images and videos on HDR displays. The general approach
of these reverse tone mapping techniques has been to identify the
bright areas within the image, and in particular areas that have been
clamped due to sensor saturation, such as light sources. Those areas
are typically significantly expanded, while the rest is left unchanged
or mildly expanded, to prevent noise amplification. We offer here a
brief discussion on reverse tone mapping techniques, and refer the
reader to the work by Banterle and colleagues [2009a] for a com-
prehensive review on the topic.

Banterle et al. [2006; 2007] apply the inverse of Reinhard’s tone
mapping operator [Reinhard et al. 2002] to the LDR image and de-
tect areas of high luminance in the resultant HDR image. They then
produce a so-called expand-map by density estimation of the bright
areas, and use this map to interpolate between the LDR image and
the initial inverse tone mapped HDR image, thus modulating the
expansion range. This framework has been extended to video by
designing a temporally-coherent version of the expand-map [Ban-
terle et al. 2008]. The LDR2HDR framework of Rempel et al. [2007]
is similar in spirit, but their expand-map (which they term bright-
ness enhancement function) can be computed in real time using the
GPU. The image intensity is first linearized, and a binary mask
is computed by thresholding the saturated pixels; the brightness
enhancement map is computed as a blurred version of the binary
mask, combined with an edge stopping function to retain contrast
of prominent edges. The contrast of the LDR image is then scaled
according to the enhancement map. Note that the expansion is af-
fected by the size of the bright objects: larger objects may receive
more brightness boost. Recently, Kovaleski and Oliveira [2009]
presented a reverse tone mapping technique which is also based on
real-time computation of a brightness enhancement function, but
substitutes a bilateral filter for the combination of a Gaussian blur
and an edge stopping function used by Rempel et al. [2007].

Meylan et al. [2006; 2007] explicitly focus on specular highlight
detection and apply a steep linear tone mapping curve to the pre-
sumably clamped areas, whereas the rest of the image is expanded
by amild linear curve. A more sophisticated segmentation and clas-
sification of bright areas in the image is done in the work of Didyk
and colleagues [2008]: they segment the bright image areas and la-
bel them as diffuse surfaces, light sources, specular highlights and
reflections using a trained classifier. Different expansion functions
are designed for each class to reproduce the dynamic range more
accurately (in particular, the luminance of light sources and high-
lights is expanded more than that of reflections, while bright diffuse
surfaces are not expanded). The method is suitable for high-quality
video enhancement thanks to the temporal coherence of the seg-
mentation and the expansion function. Finally, Wang et al. [2007]
propose to fill in the texture information of the clamped bright areas
by transferring texture from other (well exposed) areas, although
the method may not be viable if a suitable region for transferring de-
tail is not found elsewhere. Both methods [Didyk et al. 2008; Wang
et al. 2007] rely on user assistance to guide the process, whereas we
are interested in more automatic approaches.

User studies. It is now generally accepted that HDR displays
provide a richer visual experience than their LDR counterparts.
However, different parameters such as luminance, contrast or spa-
tial resolution influence our visual experience, which makes it dif-
ficult to come up with an ideal combination. Additionally, image
content probably also affects our preferences. In computer graph-
ics, several researchers have performed a series of user studies, the
findings of which may even influence future hardware development.

Yoshida et al. [2006] judged subjective preference (without a refer-
ence image) and fidelity (by comparing to a real world scene) for a
series of tone mapped images. Users could adjust brightness, con-
trast and saturation for each individual image. Although their work
was geared towards the design of a forward tone mapping opera-
tor, their conclusions are also useful for rTMO development: they
found that, in general, brighter images were preferred over dimmer
ones. Interestingly, however, in certain cases users would break this
tendency and keep a significant portion of the image dark, reducing
overall brightness and giving more importance to contrast.

Seetzen et al. [2006] analyzed the influence of luminance, contrast
and amplitude resolution of HDR displays, to guide future display
designs. Their studies show that the preferred luminance and con-
trast levels are related: for a given contrast, perceived image qual-
ity increases with peak luminance, reaches a maximum and then
slowly decreases.

Akyiiz and colleagues [2007] performed a series of psychophysical
studies which revealed that a linear range expansion of the LDR
image could surpass the appearance of a true HDR image, sug-
gesting that simple solutions may suffice for reverse tone mapping.
Recently, Banterle et al. [2009b] have presented a psychophysical
evaluation of existing reverse tone mapping techniques, the results
of which indicate that nonlinear contrast enhancement may yield
better results overall.

These previous studies provide useful insight into the desirable be-
havior of tone mapping operators. A key difference with our work
is that they were performed on correctly exposed images, whereas
we are interested in analyzing reverse tone mapping across varying
exposure conditions. In this work, we define over-exposed pixels
as those with values > 254, and under-exposed pixels as those with
null values [Rempel et al. 2007; Martin et al. 2008].

3 Experiment One: rTMO Evaluation

To assess the overall performance of an rTMO, it is important to
evaluate it across a range of different imaging conditions. To this
end, we have performed a user study in which subjects directly
compared the output of three reverse tone mapping schemes (plus
standard LDR visualization) across a range of exposures, from
clearly under-exposed to clearly over-exposed images. We asked
subjects to rate the appearance of the reverse tone mapped im-
ages on a calibrated Brightside DR37-P monitor (32.26" wide and
18.15" high), with a black level of 0.015 cd/m? and a peak lumi-
nance of over 3000 cd/m?. Calibration of the Brightside monitor
was performed to confirm linearity and stable performance during
the experiment and to enable comparison to specific intensities in
cd/m? should the need have arisen in the analysis, as per standard
practice in psychophysics. Temperature compensation was turned
off to avoid changes in intensity (this was possible thanks to the air
conditioning in the room). The LDR versions of the images were
displayed by approximately matching the contrast to a typical desk-
top TFT (Dell).

Ambient luminance was kept at about 20 cd/m?, and the partici-
pants were seated approximately one meter away from the monitor.
Based on the subjects’ ratings, we can infer which rTMOs are most
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Figure 1: The reverse tone mapping problem. Standard imaging
loses data by transforming the raw scene intensities Iscene through
some unknown function ®, which clips and distorts the original
scene values to create the Iimage , Shown in the bottom panel (val-
ues clipped from the original are shown in red). The goal of an
rTMO is to invert ® to reconstruct the original scene data, or to
convincingly “fake” it.

effective at recreating the experience of an HDR scene without vi-
sually objectionable side-effects. As opposed to other studies, we
do not provide a ground truth HDR image for direct comparison,
since it is almost always unavailable in the case of legacy content.

Stimuli: The stimuli consist of photographs of nine scenes with
different lighting conditions, captured with a Nikon D200 at an
original resolution of 3872 by 2592 (down-sampled for visualiza-
tion purposes on the Brightside monitor, which has a 1920 by 1080
pixel resolution). Each scene was captured with four different ex-
posure times. Five scenes were made up of bright images (from
approximately correct exposure to clearly over-exposed), and the
remaining four were made up of dark images (from clearly under-
exposed to approximately correct). Figure 2 shows a representative
image of each scene, while Figure 3 shows the four exposures for
two example scenes. The stimuli (please refer to the supplementary
material for the complete series of all the scenes) have been ob-
tained from a previous study on exposure perception [Martin et al.
2008], where the authors analyze basic image data to try to obtain
a correlation between image statistics and the perception of under-
and over-exposure.

From each exposure in the bracketed sequence, we obtained
three candidate renditions for display on the HDR monitor us-
ing a representative subset of reverse tone mapping algorithms:
LDR2HDR [Rempel et al. 2007], Banterle’s operator [Banterle et al.
2006] and linear contrast scaling [Akyiiz et al. 2007]. Except for
the straightforward linear scaling (in YXy color space, and thus per-
formed on linearized values) we obtained the images from the au-
thors of the original algorithms, in order to ensure accuracy in the
implementation. For the LDR2HDR algorithm the parameters used
were 150 pixels for the standard deviation of the large Gaussian blur
applied to the mask, a brightness amplification factor « = 4 and a
gradient image baseline width for divided differences of 5 pixels,

plus a 9x9-pixel kernel for the antialiasing blur and a 4-pixel ra-
dius for the open operator used to clean up the final edge stopping
function (please refer to the original paper for a detailed explanation
of these parameters). In the case of Banterle’s operator, when gen-
erating the expand-map, the parameters of the density estimation
were a radius ranging from 16 to 42 pixels (smaller radius for lower
exposures) and a threshold of 1 to 4 light sources (lower threshold
for higher exposures), being 2048 the number of generated light
sources for Median Cut sampling. In both cases, Banterle’s opera-
tor and LDR2HDR, images were linearized using gamma correction
(y = 2.2). We also added a fourth LDR rendition in which the
original images are presented within a luminance range matched to
a typical desktop TFT monitor. The goal of this fourth image is to
study whether the established assumption that visual preference is
given to HDR holds over a range of exposures.

Subjects: A gender-balanced set of twelve subjects with nor-
mal or corrected-to-normal acuity and normal color vision were
recruited to participate in the experiment. All subjects were un-
aware of the purpose of the study, and were unfamiliar with HDR
imaging.

Procedure: Participants viewed the stimuli on the Brightside
HDR display in a dark room. On each trial, subjects were pre-
sented with all four renditions of a given exposure of a given scene
in a 2X2 array (a stimulus quadruple). The positions of the four
renditions within the array were random across trials, and the order
of the trials was random with the constraint that consecutive trials
did not present the same scene. The subjects’ task was to rate the
quality of the four renditions on a scale from 1 to 7, according to
how accurately the images depicted how the scene would appear
to the subject if they were actually present in the scene. Thus the
key criterion for comparison was the subjective fidelity of the ren-
ditions. Subjects were given unlimited time for each trial and could
modify their rating of any of the renditions on a given trial before
proceeding to the next trial. Additionally, they were free to assign
the same values to all four renditions on a given trial, although they
were instructed to try to use as much of the 1-7 scale as possible
within the experiment as a whole. To aid them in setting their scale,
and to accustom them to the experimental procedure, the subjects
were presented with a number of practice trials before the start of
the experiment.

Results: Several conclusions can be drawn from this test. First,
for our images, there was a clear difference in perceived quality
between the bright and the dark series: subjects clearly preferred the
reverse tone mapped depictions of darker images over brighter ones.
This can be seen in Figure 4: not only is the overall mean value
significantly higher in the former case, but it is relatively stable
across exposure as well. In contrast, for the bright images, there is
a general downward trend in ratings across the four exposure levels.

Note that this gradual decrease in performance does not correlate
with the subjective perception of quality of the original LDR im-
age: in a previous pilot study, users picked different exposures for
each series as the subjective best, not necessarily the same as the
objective best (defined as the one with the smallest proportion of
under- and over-exposed pixels [Akyiiz et al. 2007]). The trend in-
stead correlates with the proportion of over-exposed pixels and the
mean luminance, which do increase with exposure.

Secondly, we can observe systematic differences between the
rTMOs. On average, subjects rated the LDR2HDR and the Linear
r'TMOs best (the difference between the two failed to reach sta-
tistical significance), followed by the LDR images, and finally the
output of the Banterle’s rTMO (see Figure 4). Pairwise Wilcoxon



Figure 2: Representative samples of the stimuli used in our tests. Top: bright images (Building, Lake, Graffiti, Strawberries, Sunset), each
showing a certain degree of over-exposure. Bottom: dark images (Car, Flowers, Crayons, Pencils), with varying degrees of under-exposure.

Figure 3: The complete bracketed sequence for the Building and Flowers scenes.

=) () | palind)
LDR2HDR - Banterle’s || 2.0532e-21 2.8633e-7
LDR2HDR - Linear 0.5734 0.0283
LDR2HDR - LDR 1.7762e-6 1.4976e-11
Banterle’s - Linear 1.1739e-22 0,0013
Banterle’s - LDR 4.4489e-11 0.1938
Linear - LDR 1.4697e-7 2.0538e-6

Table 1: Results of the Wilcoxon rank sum tests for the bright and
dark series (denoted by subindices b and d respectively). Values of
p < 0.05 are considered to indicate statistically significant differ-
ences between rTMOs. Thus, all differences were significant except
for LDR2HDR vs. Linear in the bright series and Banterle vs. LDR
in the dark series.

rank sum tests (similar to a non-parametric version of the t-test) re-
veal that these differences were significant to p < 0.05, except for
LDR2HDR vs. Linear in the bright series and Banterle’s operator vs.
the LDR depiction in the dark series (see Table 1 for the complete
results).

It is important to note, however, that this ordering does not hold for
all conditions. For instance, the LDR depiction was systematically
ranked lower than two of the rTMOs, suggesting that indeed HDR
visualization is still preferred over LDR, even for under- and over-
exposed images. Surprisingly, though, it ranked higher on average
than Banterle’s rTMO for bright images.

The poor overall performance of Banterle’s rTMO with this data
set is probably due to the fact that it often exaggerates the errors in
poorly exposed images, resulting in intrusive artifacts. This be-
comes clear when we measure the extent to which each rTMO
yields outlier rating values for each image. We calculate the median
rating for each image across rTMOs. We then obtain the outlier in-
dex as the difference in rating for each rTMO relative to this median

value. When an rTMO is neutral, simply reflecting the overall qual-
ity of the exposure of the image, then the outlier index tends to be
close to zero. However, when an rTMO stands out relative to the
others (for example due to the introduction of artifacts), then the
outlier index tends to deviate from zero. In Figure 5, we plot the
histogram of the outlier index values for the three rTMOs and the
LDR depiction. It is notable that for LDR2HDR, Linear and LDR,
the distribution tends to be relatively tightly tuned, while for Ban-
terle’s the spread is much broader. This means that on the one hand,
when it performs well, it tends to equal or exceed the others. How-
ever, it sometimes introduces substantial artifacts that cause the im-
ages to look worse than if they were not reverse tone mapped at
all.

Although this seems to contradict a recent study where Ban-
terle’s operator actually outperformed other rTMOs [Banterle et al.
2009b], it is important to note that the experiments carried out in
both cases differ significantly: first of all, in the work by Banterle
et al. [2009b] the LDR source images were again well exposed,
which is the regime within which Banterle’s rTMO performs well,
as we also found. However, when the source material is less flatter-
ing, we found that the algorithm sometimes produces clearly visible
artifacts, which leads to lower ratings. Second, in [Banterle et al.
2009b] the authors used a 2AFC paradigm with direct ground truth
comparison, whereas we propose a rating approach, which allows
users to report their relative subjective preferences. Both tasks are
valid ways of assessing fidelity. However, ours has the advantage
that it is closer to the real usage scenario: in general the ground
truth is unknown and is not presented for comparison.

4 Experiment Two: HDR vs. LDR Monitor

We notice that artifacts produced by LDR2HDR and Banterle’s
rTMOs are typically visible in low dynamic range renditions of the
images. This is because they generally have a spatial component:
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Figure 4: Top: bright images series. The blue bars represent the mean ratings across subjects for the four rTMOs (LDR2HDR, Banterle’s,
Linear and LDR) with increasing exposure levels (see Section 3). The last chart clearly shows the downward trend in perceived image quality.
Error bars represent standard errors on the mean. The red line in the first four charts represents the mean ratings for our proposed ~y-curve
expansion (see Section 5). It can be seen that it rates generally higher and is more stable. Bottom: same information for the dark images
series, showing higher overall means and a more stable perceived quality across exposures.
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Figure 5: Distribution of outlier indices for all four rTMOs. Top:
bright series. Bottom: dark series.

they are not simply due to inappropriate intensity levels for certain
features, but they also include fringes, visibly boosted noise and
other artifacts. To analyze this, we performed a second experiment
with seven new subjects, which was identical to the first experi-
ment, except that on each trial, the 2x2 stimulus array was tone
mapped using histogram adjustment [Ward et al. 1997]". The array
was then presented on a standard TFT monitor (note that this means
that the LDR control condition now appears much darker than on a
normal TFT).

In Figure 6, we plot the average ratings for each image in the LDR
control condition against the average ratings in the HDR condition.
As can be seen from the scatter plot, the ratings in the LDR control
condition correlated extremely strongly with the ratings in the orig-
inal experiment on the HDR monitor r? = 0.9018). We found no
significant difference between bright and dark images.

This result does not imply that the images look the same in LDR as
in HDR: the subjects were not asked to compare these conditions
directly, and previous studies have confirmed that HDR depictions
are preferred over LDR [Akyiiz et al. 2007]. Indeed, none of the

'We have used the pcond program in Radiance to tone map the stimuli.

Ratings on LDR monitor

1 2 3 4 5 6 7
Ratings on HDR monitor

Figure 6: Scatter plot showing a strong correlation between ratings
on an HDR monitor and ratings when the images were tone mapped
back down to LDR and presented on a standard TFT monitor.

subjects saw both renditions. However, it does demonstrate that the
pattern of preferences is extremely well conserved. In other words,
the images that were less preferred on the HDR monitor were also
less preferred when tone mapped back down to LDR. This has two
important implications. First, the strong correlation found suggests
that a reasonably predictive evaluation of a rTMO could be made
without directly testing on an HDR monitor. Second, as noted, the
subjective ratings of HDR images that have been generated from
LDR images seem to depend more on the presence or absence of
disturbing spatial artifacts than on the exact intensities of different
features. A similar observation (confirmed by our test) was made
by Aydin et al. [2008]: they noted that the key issue in image re-
production is to accurately maintain the important features while
preserving overall structure, whereas achieving an optical match
becomes relatively less important. This becomes even more salient
given that the dark-adaptation state of the observer is typically un-
known, making absolute intensities meaningless to the user.

The design philosophy that emerges from these considerations is



that it is generally better to apply simpler, less-aggressive rTMO
schemes if the original image is imperfect. Failing to fully recre-
ate the HDR experience is less disturbing to users than unintended
artifacts that can occur when poorly-exposed images are adjusted
too aggressively. In the following section we present a simple and
robust approach to boosting the dynamic range of over-exposed im-
ages, and show that it is less prone to artifacts than other rTMOs.

5 Expanding over-exposed content

Our experiments have shown that the danger with computationally
sophisticated reverse tone mapping schemes is the potential to make
the image appear worse than before processing, through the intro-
duction of objectionable artifacts. However, the goal of a rTMO
is to make the image content look better in general and avoid, un-
der any circumstances, making it look worse. Simple global re-
verse tone mappers, such as linear scaling and gamma boosting,
never cause polarity reversals, ringing artifacts or spuriously boost
regions well beyond their context. Our first experiment clearly in-
dicates that there is room for improvement in devising an rTMO for
bright input images with large saturated areas, whilst darker images
turn out much better. We thus focus on the former in this section.

Examining the bright sequence in Figure 3 we observe that as ex-
posure increases, more detail is lost as pixel values become satu-
rated, and colors fade to white. It thus seems reasonable to attempt
to depict the image in a way that the remaining details become
more prominent, as opposed to boosting saturated areas as exist-
ing rTMOs do. Note that we do not aim to recover information lost
to over-exposure, for which existing hallucination techniques may
work [Wang et al. 2007], but rather to increase perceived quality.

We make the following key observations, which have been con-
firmed by previous studies on reverse tone mapping: on the one
hand, darker HDR depictions are usually preferred for bright input
LDR images [Meylan et al. 2006]; on the other hand, in many cases
contrast enhancements improve perceived image quality [Rempel
et al. 2007]. These suggest expansion of the linearized luminance
values following a simple « curve, which has the desired effect of
darkening the overall appearance of the images while increasing
contrast. Linearization of the luminance values prior to the dy-
namic range expansion was done with a gamma curve (y = 2.2),
following the findings by Rempel et al. [2007] which note that sim-
ple gamma correction can be used for linearization instead of the
inverse of the camera response without producing visible artifacts.
To avoid amplifying noise, a bilateral filter [Tomasi and Manduchi
1998] can be used prior to expansion [Rempel et al. 2007]. Gamma
expansion may potentially boost noise; however, over-exposed im-
ages tend to be significantly less noisy than under-exposed ones.
Our psychophysical tests confirmed that noise amplification did not
affect the final perceived quality.

Obviously, the problem with the proposed expansion lies in auto-
matically obtaining an image-dependent suitable v value, to avoid
the cumbersome manual readjustment of the display settings for
each individual image to be shown. For this, we first obtain a mea-

1 2 3 4
Building 0.697/1.22 0.762/1.5 0.816/1.75 0.845/2.6
Lake 0.7714 /1.1 0.7453/1.2 0.7487/1.5 0.7830/2.25
Graffiti 0.7666 /1.2 0.8193/1.35 0.8738/1.5 0.9184/1.75
Strawberries | 0.6696/1.22 | 0.7218/1.35 | 0.7218/1.55 0.8479/1.9
Sunset 0.7022/1.1 0.8103/1.35 0.8016/1.4 0.8713/1.75

Table 2: Key and ~y values for the five scenes and the four exposure
levels.

sure of image brightness, for which we compute its key value; this
key acts as an indicator of whether the scene is subjectively dark
or light. Since overall brightness can be approximated with log-
luminance [Tumblin and Rushmeier 1993; Reinhard et al. 2002],
we estimate the key of an image as [Akyiiz and Reinhard 2006]:

__log Lavg —log L,
- log Lar — log Ly,

where log Lavg = (3, ,1og(L(z,y) + 6))/n. Lm and Ly are
the minimum and maximum image luminances respectively, n is
the number of pixels and L(z, y) is the pixel luminance. The small
offset § prevents singularities when L(z,y) = 0. We exclude
1% of the highest and lowest pixel values following the suggestion
in [Akyiiz and Reinhard 2006], to make the estimation less sensi-
tive to outliers. We asked users in a pilot study to manually adjust
the value of ~y in a set of images, and fitted empirical data with a
linear regression v = a - k 4+ b (with @ = 10.44 and b = —6.282),
which relates -y as a function of the image key (r? = 0.82). We
have used this expression in this work to compute the reverse tone
mapped results in this paper. Table 2 shows the key and ~ values
used for all the stimuli.

(O]

To provide a subjective evaluation of the performance of this strat-
egy, we repeated Experiment One (Section 3), substituting the LDR
depiction with our y-expanded versions in order to maintain the
2x2 stimulus array. The red line in Figure 4 shows the results.

Experiment One provides useful information about the subjective
perception of image quality. However, we are also interested in
evaluating our approach from an objective point of view. The prob-
lem is the fact that the intended comparison needs to be performed
between an LDR and an HDR image. Recently, Aydin and col-
leagues [2008] have presented a novel image quality metric which
identifies visible distortions between two images, independently of
their respective dynamic ranges. The metric uses a model of the hu-
man visual system, and classifies visible changes between a refer-
ence and a test image. The authors identify three types of structural
changes: loss of visible contrast (when contrast visible in the ref-
erence image becomes invisible in the second one), amplification
of invisible contrast (when invisible contrast in the reference image
becomes visible in the second one), and reversal of visible contrast
(when contrast polarity is reversed in the second image with respect
to the reference). It is important to remember that, as Rempel and
colleagues noted [2007], contrast enhancement tends to increase
perceived quality, and therefore is a desired outcome of the rTMO.

Figure 7 shows the results of this metric? comparing two of the orig-
inal LDR images (reference images) with the corresponding outputs
using linear expansion, LDR2HDR, Banterle’s operator and our pro-
posed «y curve. Our method reveals more detail, shows no loss of
contrast and minimizes gradient reversals. Note that while our ap-
proach may fail to utilize the dynamic range to its full extent in
some cases, it has the important and experimentally validated ad-
vantage of avoiding objectionable and unpredictable artifacts.

6 Discussion and Conclusions

Previous works on the perception of HDR images and rTM design
have assumed that the input images were, in general, correctly ex-
posed. While these provide valuable knowledge that could guide
the development of both HDR display hardware and reverse tone
mapping algorithms, existing LDR legacy content actually covers a
wide range of exposures, including material that suffers from bad
exposure. As currently designed, existing rTMOs tend to boost

2We have used the online implementation provided by the original au-
thors of the paper: http://drim.mpi-inf.mpg.de/generator.php



LDR2HDR

Linear expansion

Banterle’s operator our 7y curve

Figure 7: Comparing the results of several rTMOs with the image quality metric from Aydin et al.[2008]. The reference LDR images are
Lake (top) and Building (bottom) as depicted in Figure 2 (which correspond to the third and second exposure levels in the series. Please refer
to the supplementary material for all the exposures in all the scenes). Green, blue and red identify loss of visible contrast, amplification of
invisible contrast and contrast reversal respectively. Our ~y expansion does not lose any contrast, while minimizing gradient reversals. More
importantly, it reveals more detail in the most significant areas of the images (trees, grass, bushes and buildings in the images shown).

over-exposed areas more than the rest of the image. The strategy
works well for small areas such as light sources or highlights if the
rest of the image is correctly exposed, but no performance evalua-
tion on generally over-exposed imagery had been performed.

Experiment One shows that performance of rTMOs decreases for
input images containing a large number of over-exposed pixels,
while they seem to perform significantly better for darker images.
This suggests that for bright images the consensual approach of
boosting bright areas could be improved. We have shown that a
simple rTMO based on ~ expansion, without the need for explic-
itly detecting saturated areas, outperforms existing rTMOs in these
cases, and propose an empirical expression to automatically find a
suitable y as a function of the image’s key, without user interaction.
This rTMO has the desired properties of boosting contrast and de-
tail in non-saturated areas of the image, visually compensating for
the lack of information in the saturated ones.

We have performed two validation studies, both subjective and ob-
jective. The first one has confirmed that our approach increases
the perceived image quality for these kind of images. Pairwise
Wilcoxon rank sum tests revealed that the differences in rating
were statistically significant with respect to all other rTMOs tested.
Given that it produces darker overall images with increased con-
trast, this result is in accordance with previous suggestions [Meylan
et al. 2006; Rempel et al. 2007]. The second evaluation uses a re-
cently published image quality metric which operates with arbitrary
dynamic ranges [Aydin et al. 2008]. The metric concludes that our
method reveals more detail in non-saturated areas, does not reduce
contrast and shows less gradient reversals than the other rTMOs
tested. Thus, the artists’ original intentions are better preserved.

In both experiments we used typical numbers of subjects for a
within-subject design in psychophysics, and the results were highly
coherent across subjects. In Experiment One the reported results
are statistically significant to the p < 0.05 level, meaning that
the chances that the outcome of the pairwise comparisons would
change after running more subjects from the same population is
less than 5%. Indeed, for many of the results, the probability is
many orders of magnitude lower than this, which implies that the
qualitative pattern of the results is well conserved across subjects.
Likewise, data from Experiment Two exhibit a correlation coeffi-
cient of 0.9018, notably conclusive in statistical terms.

Our findings seem to indicate that superior rTMOs should take into

account global statistics about the image, and not just individual
pixel values. We have derived a simple strategy based on the key
value of the images, but more sophisticated strategies could also be
devised, possibly including high-level semantics.

We also ran the same expansion on the images from the dark se-
ries: as expected, we found no significant improvements over the
tested rTMOs, given that our expansion is designed for bright im-
ages (please refer to the supplementary material for the complete
data).

The results from our second experiment confirm that spatial arti-
facts are more disturbing than inaccuracy in reproduced intensity
levels [Aydin et al. 2008]. We found a very strong correlation in
the pattern of preferences when viewing images on HDR and LDR
displays. This does not mean that the images looked the same, but
it does suggest that the artifacts that emerge with poorly-exposed
input images are spatial in nature and severe enough that HDR eval-
uation is not necessary: they can also be clearly seen in LDR.

We do not aim to create new depictions of LDR material, which
would potentially interfere with the original intentions and artistic
vision. Our goal is much like that of an audio mastering engineer:
we wish to increase the illusion of power, presence and fidelity in
the final display medium, while preserving the author’s original vi-
sion of the content. Our results complement those in the work by
Akyiiz et al. [2007], where the authors show that, for correctly ex-
posed imagery, a simple linear expansion works well and suggest
that sophisticated treatment of LDR data may not be necessary. In
fact, our work is consistent with that of Akyiiz et al. [2007] in the
sense that our proposed ~ curves approach linear scaling when the
image is approximately correctly exposed. Together, both studies
suggest that potentially complex operators might not be needed.

The conclusions drawn aim to be valuable for further develop-
ment of HDR display technology, HDR imaging in general and
the development of future LDR expansion algorithms in particu-
lar. However, further tests on LDR expansion are desirable. As
the community investigates this issue further, this and similar stud-
ies will surely be extended and updated. Future reverse tone map-
ping strategies could allow the user to control dynamic range expan-
sion based on her own preferences or intended goal. Aspects such
as tonal balance or mood could potentially be independently con-
trolled by the user, in a similar manner to existing tools for LDR or
HDR images [Bae et al. 2006; Lischinski et al. 2006; Farbman et al.



2008]. Similarly, reverse tone mapping for video content is a key
challenge in this field. In order to develop operators that gracefully
handle changes in exposure over time, it is crucial to first under-
stand how they fail in the static case, for which we hope this work
stimulates future research.
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