A survey on computational displays: Pushing the boundaries of optics, computation, and perception

Belen Masia a,*, Gordon Wetzstein b, Piotr Didyk c, Diego Gutierrez a

a Universidad de Zaragoza, Dpto. Informatica e Ing. de Sistemas. Maria de Luna, 1. 50018, Zaragoza, Spain
b MIT Media Lab, 75 Amherst St, Cambridge, MA 02139, USA
c MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), 32 Vassar Street Cambridge, MA 02139 USA

1. Introduction

In 1692, French painter Gaspar Antoine de Bois-Clair introduced a novel technique that would allow him to paint so-called double portraits. By dividing each portrait into a series of stripes carefully aligned behind vertical occluding bars, two different paintings could be seen, depending on the viewer’s position with respect to the canvas. Fig. 1 shows the double portrait of King Frederik IV and Queen Louise of Mecklenburg-Gstow [1]. Later, Frederic Ives patented in 1903 what he called the parallax stereogram, based also on the idea of placing occluding bars in front of an image to allow it to change depending on the viewer’s position [2]. Five years later, Gabriel Lippmann proposed using a lenslet array instead, an approach he called integral photography [3].

Both parallax barriers and lenslet arrays shared a common objective: to provide different views of the same scene or, more technically, to increase the angular resolution at the cost of reducing the spatial resolution (the same image area needs now to be shared between several views); an additional cost is reduced intensity, since parallax barriers block a large amount of light.

Over the past few years we have seen large advances in display technology. These advances are motivated by a variety of factors, such as the need for higher spatial resolution, color accuracy, and viewing flexibility. These advances include wobbling displays, providing higher spatial resolution by increasing the angular resolution; spatial resolution (the same image area needs now to be shared between several views); an additional cost is reduced intensity, since parallax barriers block a large amount of light.

Over the past few years we have seen large advances in display technology. These advances include wobbling displays, providing higher spatial resolution by increasing the angular resolution; spatial resolution (the same image area needs now to be shared between several views); an additional cost is reduced intensity, since parallax barriers block a large amount of light.

In this survey, we provide a holistic view of the field, mainly from a computer graphics perspective, and categorize existing works according to which particular dimension(s) of the plenoptic function is enhanced. For instance, high dynamic range displays improve intensity (luminance) contrast, while automultiscopic displays expand angular resolution. We further note that the recent progress in the field has been spurred by the joint design of hardware and display optics with computational algorithms and perceptual considerations. Thus, we identify perceptual aspects of the human visual system (HVS) that are being used by these technologies to yield an apparent enhancement, beyond the physical possibilities of the display. Examples of these include wobbling displays, providing higher spatial resolution by retinal integration of lower resolution images, or the apparent increased intensity of some pixels caused by the glare illusion.

Therefore, we provide a novel view of the recent advances in the field taking the plenoptic function as a supporting structure...
(see Fig. 2) and putting an emphasis on human visual perception. For each section, each focusing on a dimension of the plenoptic function, we first present perceptual foundations related to that dimension, and then describe display technologies, and software solutions for the generation of content in which the specific dimension being discussed is enhanced. Specifically, we first address expansion on dynamic range in Section 2, followed by color gamut (Section 3), increased spatial resolution (Section 4), increased temporal resolution (Section 5) and finally increased angular resolution, for both stereo (Section 6) and automultiscopic displays (Section 7).

For topics where there is a large body of existing literature, beyond what can be reasonably covered by this survey, we highlight some of the main techniques and suggest alternative publications for further reading (this is the case of, e.g., tone mapping or superresolution techniques). For other related aspects not covered here, such as detailed descriptions of hardware, electronics or the underlying physics of the hardware, we refer the interested reader to other excellent sources [10,11]. Finally, although projection-based display systems are included in this survey whenever they focus on enhancing the aspects of the plenoptic function, there are a number of works which fall out of the scope of this survey. These include works dealing with geometric calibration (briefly discussed in Section 3.3), or extended depth-of-field projection [12,13]. We refer the interested reader to existing books and tutorials focused on projection systems [14,5,15].

2. Improving contrast and luminance range

The dynamic range of a display refers to the ratio between the maximum and minimum luminance that the display is capable of emitting [16]. The advantages and improved quality of High Dynamic Range (HDR) images are by now well established. By not limiting the values of the red, green and blue channels to the range 0..255, physically accurate photometric values can be stored instead. This yields much richer depictions of the scenes,
including more detail in dark areas and avoiding saturated pixels (Fig. 3).

Many applications can benefit from HDR data, including image-based lighting [17], image editing [18] or medical imaging [19]. The field has been extensively investigated, especially in the last decade, and several excellent books exist offering detailed explanations on related aspects, including image formats and encodings, capture methods, or quality metrics [16,20–22].

2.1. Perceptual considerations

There are two types of photoreceptors in the eye: cones and rods. Each of the three cone types is sensitive in a wavelength range, the sensitivity of each type peaking at a different wavelength, roughly belonging to red, green and blue; combined, they allow us to see color. They are most sensitive to photopic (day light) luminance conditions, usually above 1 cd/m², while rods (of which only one type exists) are most sensitive to scotopic (night light) conditions, approximately below \(10^{-3}\) cd/m². The bridging range where both cones and rods play an active role at the same time is called the mesopic range (see Fig. 4).

On the other hand, luminance values in natural scenes (from moonless night sky to direct sunlight from a clear sky) may span about 12–14 orders of magnitude, although simultaneous luminance values usually fall within a more restricted range of about 4–6 orders of magnitude (for a more exhaustive discussion on luminance ranges in natural scenes the reader may refer to [24]). The HVS can perceive only around four orders of magnitude simultaneously, but it uses a process known as dynamic adaptation, effectively shifting its sensitive range to the current illumination conditions [16,25,26].

Despite this ability to adapt across a wide dynamic range, our ability to discern local scene contrast boundaries is reduced by veiling caused by light scattering inside the eye (an effect known as veiling glare, or disability glare). Many other luminance-related factors affect our visibility, including the intensity of the background (Weber’s law) and the spatial frequency of the stimuli, whose dependency is modeled by the contrast sensitivity function (CSF, see Fig. 5, right); the bleaching of photoreceptors when exposed to high levels of luminance, which translates into a loss of spectral sensitivity [27]; the Craik–O’Brien–Cornsweet illusion, by which adjacent regions of equal luminance are perceived differently depending on the characteristics of their shared edges [28]; or the effect known as visual masking, where contrast sensitivity loss is induced due to the presence of signal in nearby regions [23]. Researchers have also investigated perceptual aspects of increased dynamic range, including analyzing the subjective preferences of users, to improve HDR display technology [29–31].

2.2. Display architectures

Traditional CRT displays typically show up to two orders of magnitude of dynamic range: analog display signals are typically 8-bit because, even though a CRT display could reproduce higher bit-depths, it would be including values at levels too low for humans to perceive [16]. LCD displays, although brighter, do not significantly improve that range. HDR displays enhance the contrast and luminance range of the displayed images, thus providing a richer visual experience. A passive HDR stereoscopic viewer overlaying two transparencies was presented by Ledda et al. [32]. Seetzen et al. [33,34] presented the first two active prototypes, which set the basis for later models that can be now found in the market (Fig. 5, left). The two prototypes shared the key idea illustrated in Fig. 5, center—of optically modulating a high spatial resolution (but low dynamic range) image with an LCD panel showing a grayscale, low spatial resolution (but high intensity) version of the same image. This provides a theoretical contrast equal to the multiplication of both dynamic ranges. Alternatively, two parallel-aligned LCD panels of equal resolution can be used [35]. A detailed description of the first prototypes and the concept of dual modulation of light can be found in Seetzen’s Ph.D. Thesis [36].

Commercially available displays with increased contrast are mostly based on local dimming. This name refers to the particular case of dual modulation in which one of the modulators has a significantly lower resolution than the other [16]. This arises from knowledge of visual perception, and in particular of the effect known as veiling glare. Due to veiling glare, the contrast that can be perceived at a local level is much lower than at a global level, meaning that there is no need to have very large local contrast, and thus a lower resolution panel can be used for one of the modulators. The drawback is potentially perceivable halos, whose visibility depends on the particular arrangement of the LED array.

Projector-based systems exist, also based on the principle of double modulation. Majumder and Welch showed how by overlapping multiple projectors, the intensity range (difference between highest and lowest intensity levels; note that it is different from contrast, which is defined as the ratio) could be increased [38]. The first contrast expansion technique was proposed by Pavlovych and Stuerzlinger [39], where a small projected image is first formed by a set of lenses, which is subsequently modulated by an LCD panel. A second set of lenses enlarges the final image. Other similar approaches exist, making use of LCD or LCOS panels to modulate the illumination [40,41]. Multi-projector tiled displays present another problem in addition to limited dynamic range: brightness and color discontinuities at the overlapping projected areas [42]. Majumder et al. [43] rely on the
contrast sensitivity function to achieve a seamless integration with enhanced overall brightness. Recently, secondary modulation of projected light has also been used to boost contrast of paper images and printed photographs [19] (see Fig. 6).

2.3. HDR content generation and processing

Contrast and accurate depiction of the dynamic range of real world scenes have been a key issue in photography for over a century (see for instance the work of Ansel Adams [44]). The seminal works by Mann and Picard [45], and by Debevec and Malik [46], brought HDR imaging to the digital realm, allowing to capture HDR data by adapting the multi-bracketing photographic technique. More sophisticated acquisition techniques have continued to appear ever since (see [47] for a compilation), helping for instance to reduce ghosting artifacts in dynamic scenes [48–50] (see [51] for a recent review on deghosting techniques), using computational photography approaches [52,53], mobile devices [54,55] or directly capturing HDR video [56,57,58].

Fig. 5. Left: The first HDR prototype display, employing dual modulation (image from [34], copyright ACM 2004). Center: scheme illustrating the functioning of dual modulation, please refer to the text for details (image source: LCDTV Buying Guide). Right: the contrast sensitivity function, represented by a Campbell-Robson chart [37]: the abscissa corresponds to increasing spatial frequencies, the ordinate to decreasing amplitude of the contrast. The chart shows that the sensitivity of the HVS to contrast depends on the spatial frequency of the signal, and follows an inverted U-shape.

Fig. 6. Superimposing dynamic range for medical applications. Left: a single hardcopy print. Right: expanded dynamic range by superimposing three different prints with different exposures [19] (image copyright ACM 2008).

Regarding the visualization of such HDR content, we distinguish three main categories: tone-mapping, by which high dynamic range is scaled down to fit the capabilities of the display; reverse tone mapping, by which low dynamic range is expanded for correct visualization on more modern higher dynamic range displays; and apparent brightness enhancement techniques, which leverage how our brains interpret some specific luminance cues and translate them into the perception of brightness (but the actual dynamic range remains unchanged).

Tone mapping: Over the past few years, many user studies have been performed to understand which tone mapping strategies produce the best possible visual experience [59,29,30,60]. The field has been extremely active over the past two decades, with a proliferation of many algorithms which can be broadly characterized as global or local operators. While a complete survey of all existing tone mapping operators is out of the scope of the work, the interested reader can refer to other sources of information, where many of these algorithms are discussed, categorized and compared [61,16,20,62].

Global operators apply the same mapping function to all the pixels in the image, and were first introduced to computer graphics by Tumblin and Rushmeier [64]. They can be very simple, although they may fail to reproduce fine details in areas where the local contrast cannot be maintained [65,66]. To provide results that better simulate how real-world scenes are perceived, usually some perceptual strategies are adopted, based on different aspects of the HVS [67–70]. Usually these perceptually motivated works rely on techniques like multi-scale representations, transducer functions, color appearance models or retinex-based algorithms [71].

Local operators, on the other hand, tone-map each pixel taking into account information from the surrounding pixels, and thus usually allow for better preservation of local contrast [72]. The main drawback is that the local nature of the algorithms may give rise to unpleasant halos around some edges [16]. Again, perceptual considerations can be introduced in their design to reduce visible artifacts [73,74]. Other strategies include adapting well known analog tone reproduction techniques from photography [63] (Fig. 7), while others take into account the temporal domain, being especially engineered for videos [75].

Other operators work from a different perspective, for instance by working in the gradient domain [76] or in the frequency domain [77]. The exposure fusion technique [78] circumvents the need to obtain an HDR image first and then apply a tone mapping operator. Instead, the final tone-mapped image is directly assembled from the original multi-bracketed image sequence, based on simple, pixel-wise quality measures. Last, the work by Mantiuk et al. [79] derives a tone mapping operator that takes explicitly into account the different displays and viewing conditions the images can be viewed under.

Reverse tone mapping: Somewhat less studied is the problem of reverse tone mapping, where the goal is to take LDR content and expand its contrast to recreate an HDR viewing experience. This is
3. Improving color gamut

In 1916 the company Technicolor was granted a patent for “a device for simultaneous projection of two or more images” [107] which would allow the projection of motion pictures in color. Although not the only color film system, it would be the system primarily used by Hollywood companies for their movies in the first half of the 20th century. Color television came later, starting in 1950 in the United States (although NTSC was not introduced until 1953), and not reaching Europe until 1967 (PAL/SECAM systems). Several standards are in use today, among which YCbCr is the ITU-R recommendation for HDTV (high definition television, with a standard resolution of 720p or 1080p). Until today, the quest to reproduce the whole color range that our visual system can perceive continues.

3.1. Perceptual considerations

The dual-process theory is the commonly accepted theory that describes the processing of color by the HVS [37]. The theory states that color processing is performed in two sequential stages: a...
The trichromatic stage is based on the theory that any perceivable color can be generated with a combination of three colors, which correspond to the three types of color-perceiving photoreceptors of our visual system (see Section 2.1). In the opponent-process stage the three channels of the previous stage are re-encoded into three new channels: a red-green channel, a yellow-blue channel, and a non-opponent channel for achromatic responses (from black to white). These theories, originally developed by psychophysics, are confirmed by neurophysiological results.

The theories which have been mentioned describe the behavior of the HVS for isolated patches of color, and do not take into account the influence of surrounding factors, such as environment lighting. Chromatic adaptation (or color constancy), for instance, is the mechanism by which our visual system adapts to the dominant colors of illumination. There are many other mechanisms and effects that play a role in our perception of color, such as simultaneous contrast, the brightness of colors, image size or the luminance level of the surroundings, and many experiments have been carried out to try to quantify them [109–113]. Recently, edge smoothness was also found to have a measurable impact on our perception of color [114,115]. Further, color perception has a large psychological component, making it a challenging task to measure, describe or reproduce color. So-called “standardized” observers exist [37,116], based on measurements of a set of observers, and are used as a reference for display design, manufacturing or calibration.

3.2. Display architectures

Increasing the color gamut of displays is typically achieved by using more saturated primaries, or by using a larger number of primaries. The former essentially “pushes further” the corners of the triangle defining the color gamut in a three-primary system; an alternative technique consists of using negative values for the RGB color signals [117]. Emitting elements with a broad spectral distribution, as is the case of phosphors in CRTs, severely limit the achievable gamut. Research has been carried out to improve the color gamut of these types of displays [118], but for the last two decades liquid crystal displays have been the most common display technology due to their advantages over CRTs [119,120]. Progressively, the traditional CCFL (cold cathode fluorescent lamp) backlights used in these displays are being substituted by LED backlights due to the lower power consumption and the wider color gamuts they can offer because of the use of saturated primaries [121,122]. LEDs also have some drawbacks, mainly the instability of their emission curves, which can change with temperature, aging or degradation; color non-uniformity correction circuits are needed for correct color calibration in these displays.

Fig. 9. Afterimage simulation of a traffic light, showing variations over time of color, degree of blur and shape [103] (image copyright Wiley 2012). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 10. Binocular tone mapping. When the two images are presented simultaneously to both eyes (one to each eye), the fused image presents more detail than any of the two individual, low dynamic range depictions [106] (image copyright ACM 2012).
Seetzen et al. [126] presented a calibration technique for HDR displays to help overcome degradation problems of the LEDs that cause undesirable color variations in the display over time. Their technique can additionally be modified to extend it to conventional LCD displays. Within this trend of obtaining more pure primaries, lasers have been proposed as an alternative to LEDs due to their extremely narrow spectral distribution, yielding displays that can cover the gamuts of the most common color spaces (ITU-R BT.709, Adobe RGB) [127], or a display offering a color gamut that is up to 190% the color gamut of ITU-R BT.709 [128–131].

Multiple primary displays result in a color gamut that is no longer triangular, and can cover a larger area of the perceivable horseshoe-shaped gamut. Ultra wide color gamut displays using four [132], five [133,134], and up to six color primaries [135–137] have been proposed. Multi-primary displays based on projection also exist [138–141].

3.3. Achieving faithful color reproduction

Tone reproduction operators (see Section 2) can benefit from the application of color appearance models, to ensure that the chromatic appearance of the scene is preserved for different display environments [143]. Several color appearance models (CAMs) have been proposed, with the goal of predicting how colors will be perceived by an observer [144,111,145]. In fact, it has been recently argued that tone reproduction and color appearance, traditionally treated as different problems, could be treated jointly [146] (Fig. 12). Usually, simple post-processing steps are performed to correct for color saturation [66,147]. However, most color appearance models work under a set of simplified viewing conditions; very few, for instance, take into account issues associated with dynamic range. A few notable exceptions exist, such as iCAM [148,149] or the subsequent iCAM06 [150]. Recently, Kim et al. developed a model of color perception based on psychophysical data across most of the dynamic range of the HVS [142] (Fig. 11), while Reinhard and colleagues proposed a model that adapts images and video for specific viewing conditions such as environment illumination or display characteristics [151], as shown in Fig. 13.

From the whole range of colors perceivable by our visual system, only a subset can be reproduced by existing displays. The sRGB color space, which has been the standard for multimedia systems, works well with, e.g., CRT displays but falls short for wider gamut displays. In 2003 the scRGB, an extended RGB color space was approved by the IEC [152], and the extended color space xyYCC [153] followed, which can support a gamut which is nearly double that supported by sRGB.

Faithful color reproduction on devices with different characteristics requires gamut manipulation, known as gamut mapping. Gamut mapping can refer both to gamut reduction and expansion, depending on the relationship between the original and target color gamuts [154]; these can further be given by a device or by the content. An example of the latter is the case of image-dependent gamut mapping, where the source gamut is taken from the input image and an optimization is used to compute the appropriate mapping to the target device [155]. Gamut expansion can be done automatically [156,157] or manually by experienced artists. The work of Anderson et al. [158] combines both approaches: an expert expands a single image to meet the target display’s gamut and a color transformation is learned from that expansion and applied to each frame of the content. The reader may refer to the work by Muijs et al. [159] and by Laird et al. [160] for a description and evaluation of gamut extension algorithms, or to the comprehensive work of Morovic for a more general view on gamut mapping and color management systems [161]. Finally, the concept of display-adaptive rendering was introduced by Glassner et al. [162], applicable to the inverse case of needing to compress color gamut of content to that of the display. Instead of

![Image](image1.png)

Fig. 11. Color appearance of a high dynamic range image, based on predicted lightness, colorfulness and hue [142] (image copyright ACM 2009). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
compressing color gamut as a post-process operation on the image [163,164], they propose to automatically modify scene colors so that the rendered image matches the color gamut of the target display.

Accurate reproduction of color is particularly challenging for projection systems, especially if the projection surface properties are unknown and/or the image is not being displayed on a projection-optimized screen. Radiometric calibration is required to faithfully display an image in those cases. Typically, projector-camera systems are used for this purpose. This compensation is of special importance in screens with spatially varying reflectance [165,166]. Some authors have incorporated models of the HVS to radiometrically compensate images in a perceptual way, i.e., minimizing visible artifacts [167], while others incorporate knowledge of our visual system by computing the differences in perceptually uniform color spaces [168]. Conventional methods usually assume a one-to-one mapping between projector and camera pixels, and ignore global illumination effects, but in the real world there can be surfaces where these effects have a significant influence (e.g., the presence of transparent objects, or complex surfaces with interreflections). Wetzstein and Bimber [169] propose a calibration method which approximates the inverse of the light transport matrix of the scene to perform radiometric calibration in real time and accounting for global illumination effects. These works on radiometric compensation often also deal with geometric correction. Geometric calibration compensates, often by warping the content, for the projection surface being non-planar. An option is to project patterns of structured light onto the scene, as done by, e.g., Zollmann and Bimber [170]; an alternative is to utilize features of the captured distorted projection, first introduced by Yang and Welch [171]. Geometric calibration for projectors is out of the scope of this survey, but we refer the interested reader to the book by Majumder and Brown [15].

4. Improving spatial resolution

High spatial definition is a key aspect when reproducing a scene. It is currently the main factor that displays manufacturers exploit (with terms such as Full HD, HDTV, UHD, referring to different, and not always strictly defined, spatial resolutions of the display), since it has been very well received among customers. So-called 4K displays, i.e., those with a horizontal resolution of around 4000 pixels, are already being commercialized, although producing content at such high resolution has now become an issue due to storage and streaming problems; we describe existing approaches in terms of content generation in Section 4.3.2.

4.1. Perceptual considerations

Of the two types of photoreceptors in the eye (see Section 2.1), cones have a faster response time than rods, and can perceive finer detail. The highest visual acuity in our retina is achieved in the fovea centralis, a very small area without rods and where the density of cones is largest. According to Nyquist’s theorem, assuming a top density of cones in the fovea of 28 arcsec [172], this concentration of cones allows an observer to distinguish one-dimensional sine gratings of a resolution around 60 cycles per degree [173]. Additionally, sophisticated mechanisms of the HVS enhance this resolution, achieving visual hyperacuity beyond what the retinal photoreceptors can resolve [174]. In comparison, the pixel size of a typical desktop HD display (a 120 Hz Samsung SyncMaster 2233, 22 in), when viewed at a distance of half a meter, covers approximately nine cones [173]. The peri-foveal region is essentially populated by rods; these are responsible for peripheral vision, which is much lower in resolution. As a consequence, our eyes are only able to resolve with detail the part of a scene which is focused on the fovea; this is one of the reasons for the saccadic movements our visual system performs. Microsaccades are fast involuntary shifts in the gazing direction that our eyes perform during fixation. It is commonly accepted that they are necessary for human vision: if the projection of a stimulus on the retina remains constant the visual percept will eventually fade out and disappear [175].

On the contrary, if the stimulus changes rapidly, the information will be fused in the retina by temporal signal integration [176]. Related to this, the smooth pursuit eye motion (SPEM) mechanism in the HVS allows the eyes to track and match velocities with a slowly moving feature in an image [177–179]. This tracking is almost perfect up to 7 deg/s [179], but becomes inaccurate at 80 deg/s [180]. This process stabilizes the image on the retina and allows to perceive sharp and crisp images.

4.2. Display architectures

There is a mismatch between the spatial resolution of today’s captured or rendered images, and the resolution that displays that can currently be found in a typical household can show. This effectively means that captured images need to be downsampled...
before being shown, which leads to loss of fine details and the introduction of new artifacts. Higher resolution can be achieved by tiling projected images [182–186]. Another obvious way to increase the spatial resolution of displays is to have more pixels per inch, in order to make the underlying grid invisible to the eye. The Retina display by Apple1, for instance, packs about 220 pixels per inch (for a 15 in display). Even though this is a very high pixel density, it is still not enough for a user not to distinguish pixels at the normal viewing distance of 20 in.1 Other alternatives to a very high pixel density have been explored. With the exception of sub-pixel rendering [187] (Section 4.3), all superresolution displays require specialized hardware configurations. These can be categorized into optical superposition and temporal superposition.

Optical superposition is a projection principle where low-resolution images from multiple devices are optically superimposed on the projection screen. The superimposed images are all shifted by some amount with respect to each other such that one super-resolved pixel receives contributions from multiple devices. Examples of this technique include [188,189]. Precise calibration of the projection system is essential in these techniques. The optimal pixel states to be displayed by each projector are usually computed by solving a linear inverse problem. Performance metrics for these types of superresolution displays are discussed in [190].

Temporal superposition: Similar to optical superposition techniques, temporal multiplexing requires multiple low-resolution images to be displayed, each shifted with respect to each other. Shown faster than the perceivable flickering frequency of the HVS (which depends on a number of factors, as described in Section 5.1), these images will be fused together by the HVS into a higher resolution one, beyond the actual physical limits of the display. This idea can be seen as the dual of the jittered camera for ensembleing a high resolution image from multiple low-resolution versions [192]. The shift can be achieved in single display/projector designs using actuated mirrors [193] or mechanical vibrations of the entire display [181] (Fig. 14). As an interesting avenue of future work, the authors of the latter work outline how an apparent pass band of moving images, improving the perceived quality with respect to a standard RGB pattern.

The disadvantage of most existing superresolution displays is that either multiple devices are required, increasing size, weight, and cost of the system, or that mechanically moving parts are necessary. One approach that does not require either is optical pixel sharing (OPS) [191,195], which uses two LCD panels and a jumbling lens array in projectors to overlay a high-resolution edge image on a coarse resolution image to adaptively increase resolution (Fig. 15). OPS is compressive in the sense that the device does not have the degrees of freedom to represent any arbitrary target image. Much like image compression techniques, OPS relies on the target to be compressible.

4.3. Generation of content

We group existing techniques for higher definition content generation into three categories: superresolution, sub-pixel rendering and temporal integration.

Superresolution: Increasing spatial resolution is related to superresolution techniques (see for instance [196,192,197]). The underlying idea is to take a signal processing approach to reconstruct a higher-resolution signal from a low-resolution one (or several). It is less expensive than physically packing more pixels, and the results can usually be shown on any low-resolution display. Super-resolution techniques are used in different fields like medical imaging, surveillance or satellite imaging. We refer the reader to recent state of the art reports for a complete overview [198,199].

Majumder [200] provides a theoretical analysis investigating the duality between superresolution from multiple captured images, and from multiple overlapping projectors, and shows that superresolution is only feasible by changing the size of the pixels. In their work on display supersampling [188], the authors present a theoretical analysis to engineer the right aliasing in the low-resolution images, so that resolution is increased after superposition, even in the presence of non-uniform grids. The same authors had previously presented a unifying theory of both approaches, tiled and superimposed projection [201].

Sub-pixel rendering: Sub-pixel rendering techniques increase the apparent resolution by taking advantage of the display sub-pixel architecture. Instead of assuming that each channel is spatially coincident, they treat each one differently [202]. This approach has given rise to many different pixel architectures and reconstruction techniques [203–205]. For instance, Hara and Shiramatsu [206] show that an RGGB pattern can extend the apparent pass band of moving images, improving the perceived quality with respect to a standard RGB pattern.

One of the key insights to handle sub-pixel sampling artifacts like color fringes and moire patterns is to leverage the fact that human luminance and chrominance contrast sensitivity functions differ, and both signals can be treated differently. Platt [187] and Klompenhouwer and De Haan [207] exploited this in the context of text rasterization and image scaling, respectively. Platt’s method, used in the ClearType functionality, is limited to increased resolution in the horizontal dimension; based on this, other different filtering strategies to reduce color artifacts have been tested [208]. Messing and Daly additionally remove chrominance.

1 Pixel density and viewing distance calculator at http://isthisretina.com/.
aliassing using a perceptual model [209], while Messing et al. present a constrained optimization framework to mask defective sub-pixels for any regular 2D configuration [210]. These approaches have been recently generalized, presenting optimal, analytical filters for different one- and two-dimensional sub-pixel layouts [211].

Temporal integration: An analysis of the properties of the superimposed images resulting from temporal integration appears in [213]. Berthouze and Fattal [181] present an analysis of the theoretical limits of this technique. Instead of physically shaking the display, Basu and Baudisch [214] change the strategy and introduce subtle motion to the displayed images, so that higher resolution is perceived by means of temporal integration. Didyk et al. [212] project moving low resolution images to predictable locations in the fovea, leveraging the SPEM feature of the HVS (see Section 4.1) to achieve perceived high resolution images from multiplexed low resolution content (Fig. 16). This work is limited to one-dimensional, slow panning movements at constant velocity. In subsequent work, the idea is generalized to arbitrary motions and videos, by analyzing the spatially varying optical flow. The assumption is that between consecutive saccades, SPEM closely follows the optical flow [215].

5. Improving temporal resolution

Although spatial resolution is one of the most important aspects of a displayed image, temporal resolution cannot be neglected. In this context, it is crucial that the HVS acts as a time-averaging sensor. This has a huge influence in situations where the displayed signal is not constant over time, or there is motion present in the scene. In this section, we will show that the perceived quality can be significantly affected in such situations and present methods that can improve it.

5.1. Perceptual considerations

The HVS is limited in perceiving high temporal frequencies, i.e., an elevated number of variations in the image per unit time. This is due to the fact that the response of receptors on the retina is not instantaneous [216]. Also, high-level vision processes further lower the sensitivity of the HVS to temporal changes. As a result, temporal fluctuations of the signal are averaged and perceived as a constant signal. One of the basic findings in this field is Bloch’s law [217]. It states that the detectability of a stimulus depends on the product of luminance and exposure time. In practice, this means that the perceived brightness of a given stimulus would be the same if the luminance was doubled and the exposure time halved. Although it is often assumed that the temporal integration of the HVS follows this law, it only holds for short duration times (around 40 ms) [217].
From a practical point of view it is more interesting to know when the HVS can perceive temporal fluctuations and when it interprets them as a constant signal. This is defined by the critical flicker frequency (CFF) [176], which defines a threshold frequency for a signal to be perceived as constant or as changing over time. The CFF depends on many factors such as temporal contrast, luminance adaptation, retinal region or spatial extent of the stimuli. For different luminance adaptation levels the CFF was measured yielding a temporal contrast sensitivity function [218]. It is also important that the CFF significantly decreases for smaller stimuli, and that peripheral regions of the retina are more sensitive to flickering [219,220]. Recently, these different factors were incorporated into a video quality metric [221].

In the context of display design, in displays that do not reproduce a constant signal (e.g., CRT displays), low refresh rate can lead to visible and undesired flickering. Another problem that can be caused by poor temporal resolution is jaggy motion. Instead of smooth motion, which is normally observed in the real world, fast moving objects on the screen appear as they were jumping in a discrete way. Also, when the frame rate of the content does not correspond to the frame rate of the display some frames need to be repeated or dropped. This, similar to low frame rate, contributes significantly to reduced smoothness of the motion.

Besides the aforementioned issues, low frame rate may introduce significant blur in the perceived image. This type of blur, often called hold-type blur, is purely perceptual and cannot be observed in the content: it arises from the interaction between the display and the HVS [223]. In the real world objects move continuously, and they are tracked by the human eyes almost perfectly; this is enabled by the so-called smooth pursuit eye motion (SPEM, refer to Section 4.1 for details). In the context of current display devices, although the tracking is still continuous, the image presented on a screen is kept static for an extended period of time (i.e., the period of one frame). Therefore, due to temporal averaging, the receptors on the retina average the signal while moving across the image during the period of one frame. As a result the perceived image is blurred (see also Fig. 18). The hold-type blur can be modeled using a box filter [224], its support dependent on object velocity and frame rate. This blur is not the same blur as that due to the slow response of the liquid crystals in LCD panels. Pan et al. [223] demonstrated that only 30% of the perceived blur is a consequence of the slow response (and they assumed a response of 16 ms, whereas in current displays this time does not exceed 4 ms). This, together with overdrive techniques, makes the problem of slow response time of displays negligible compared to the hold-type blur. The hold-type blur is a big bottleneck for display manufacturers, as it can destroy the quality of images reproduced using ultra-high resolutions such as 4K or 8K. Since the strength of the blur depends on angular object velocity, the problem becomes even more relevant with growing screen sizes, which are desired in the context of home cinemas or visualization centers.

5.2. Temporal upsampling techniques

A straightforward solution to all problems mentioned above is higher framerate: it reduces jaggy motion and solves the problem of framerate conversion. For higher frame rates the period for which moving objects are kept in the same location is reduced, therefore, it can also significantly reduce hold-type blur. However, high frame rate is not provided in broadcasting applications, and in the context of computer graphics high temporal resolution is very expensive. This forced both the graphics community and display manufacturers to devise techniques to increase the frame rate of the content in an efficient manner.
Most of the industrial solutions for temporal upsampling that are used in modern TV-sets are designed to compensate for the hold-type blur. Efficiency is key in these solutions, as they are often implemented in small computational units. These techniques usually increase frame rate to, e.g., 100 or 200 Hz, by introducing intermediate frames generated from the low frame rate broadcasted signal.

One of the simplest methods in this context is black data insertion, i.e., introducing black frames interleaved with the original content. This solution can reduce hold-type blur because it reduces the time during which the objects are shown in the same position. A similar, more efficient hardware solution is to turn on and off the backlight of LCD panels [223, 225]. This is possible because current LCD panels employing LED backlights can switch at frequencies as high as 500 Hz. These two techniques, although fast and easy to implement, suffer from brightness and contrast reduction as well as possible temporal flickering. To overcome these problems, Chen et al. [226] proposed to insert blurred copies of the original frames. Although this ameliorates the brightness issue, it may produce ghosting, since the additional frames are not motion compensated.

More common solutions in current TV screens are frame interpolation techniques. In these techniques, additional frames are obtained by interpolating original frames along motion trajectories [227]. Such methods can easily expand a 24 Hz signal, a common standard for movies, to 240 Hz without brightness reduction or flickering. The biggest limitation of these techniques is related to optical flow estimation, which is required for good interpolation. For efficiency reasons simple optical flow techniques are used, which are prone to errors; they usually perform well for slower motions and tend to fail for faster ones [222]. Additionally, these techniques interpolate in-between frames, which requires knowledge of future frames. This introduces a lag which is not a problem for broadcast applications, but may be unacceptable for interactive applications. In spite of these problems, motion-based interpolation together with backlight flashing is the most common technique in current display devices. An extended survey on these techniques is provided in [225].

An alternative software solution used in TV-sets to reduce hold-type blur is to apply a filtering step which compensates for the blur later introduced by the HVS. This technique is called motion compensated inverse filtering [224, 228]. In practice, it boils down to applying a 1D sharpening filter oriented along motion trajectories, the blur kernel being estimated from optical flow. The effectiveness of such solution is limited by the fact that the hold-type blur removes certain frequencies which cannot be restored using prefiltering. Furthermore, such techniques are prone to clipping problems and oversharpening.

The problem of increasing temporal resolution is also well known in computer graphics. However, in this area, not all solutions need to provide a real-time performance; for instance some of them were designed to improve low performance of high quality global illumination techniques, where offline processing is not a problem. This, in contrast to previously mentioned industrial solutions, allows for more sophisticated and costly techniques. Another advantage of computer graphics solutions is that they very often rely on additional information that is produced along with the original frames, e.g., depth or motion flow. All this significantly improves the quality of new frames.

One group of methods which can be used for creating additional frames and increasing frame rate are warping techniques. The idea of these techniques [229] is to morph texture between two target images, creating a sequence of interpolated images; an extended survey discussing these techniques was presented by Wolberg [230]. Recently Liu et al. [231] presented content-preserving warps for the purpose of video stabilization. Using their technique they can synthesize images as if they were taken from nearby viewpoints. This allows them to create video sequences where the camera path is smooth, i.e., the video is stabilized. Although warping techniques were not originally designed for the purpose of improving temporal resolution, they can be successfully used in this context, taking advantage of the fact that interpolated images are very similar when performing temporal upsampling. An example of this is a method by Mahajan et al. [232]. Their technique performs well for single disocclusions, yielding high quality results for standard content (Fig. 18). It requires, however, knowledge of the entire sequence, therefore it is not suitable for real-time applications. Although the high quality of interpolated frames is desirable independent of the location, Stich et al. [233] showed that high-quality edges are crucial for the HVS. Based on this observation, they proposed a technique that takes special care of edges, making their movement more coherent and smooth.

For interactive applications, where frame computation costs can limit interactivity, often additional information such as depth or motion flow is leveraged for more efficient and effective frame interpolation. One of the first methods for temporal upsampling for interactive applications was proposed by Mark et al. [234].
They used depth information to reproject shaded pixels from one frame to another. In order to avoid disocclusions they proposed to use two originally rendered frames to compute in-between frames, which significantly decreases the problem of missing information. Similar ideas were used later where re-use of shaded samples was proposed to speed up image generation. In Render Cache, Walter et al. [235] used forward reprojection to scatter the information from previously rendered frames into new ones. Later, forward reprojection was replaced by reversed reprojection [236]. Instead of re-using pixel colors, i.e., the final result of rendering, also intermediate values can be stored and re-used for computation of next frames [237], speeding up the rendering process. Another efficient method for temporal upsampling in the context of interactive applications was proposed by Yang et al. [238]. Their method uses fixed-point iteration to find a correct pixel correspondence between originally rendered views and interpolated ones. Later, this technique was combined with mesh-based techniques by Bowles et al. [239]. The temporal coherence of computer graphics animations was also explicitly exploited by Herzog et al. [240]: they proposed a spatio-temporal upsampling where they not only increased the frame rate, but also the spatial resolution. A more extensive survey on these techniques can be found in [241].

Although techniques developed for computer graphics applications and for TV-sets have slightly different requirements, it is possible to combine these techniques. Didyk et al. [222] proposed a technique which combines blurred frame insertion and mesh-based warping. The method can be performed in a few milliseconds, and the quality is assured by exploring temporal integration of the HVS. The artifacts in generated frames are blurred, and the loss of high frequencies is compensated in the original frames. This solution eliminates artifacts produced by warping techniques as well as blurred frame insertion. Additionally, the technique performs extrapolation instead of interpolation assuming a linear motion. This eliminates the problem of lag, but can create artifacts for a highly nonlinear and very fast motion. The mesh-based temporal upsampling was further improved in [242].

6. Improving angular resolution I: stereoscopic displays

Recently, due to the success of big 3D movie productions, stereo 3D (S3D) is receiving significant attention from consumers as well as manufacturers. This has spurred rapid development in display technologies, trying to bring high quality 3D viewing experiences into our homes. There is also an increasing amount of 3D content available to customers, e.g., 3D movies, stereoscopic video games, even broadcast 3D channels. Despite the fast progress in S3D, there are still many challenging problems in providing perceptually convincing stereoscopic content to the viewers.

6.1. Perceptual considerations

When perceiving the world, the HVS relies on a number of different mechanisms to obtain a good layout perception. These mechanisms, also called depth cues, can be classified as pictorial (e.g., occlusions, relative size, texture density, perspective, shadows), dynamic (motion parallax), ocular (accommodation and vergence) and stereoscopic (binocular disparity) [243]. The sensitivity of the HVS to different cues varies [244], and it depends mostly on the absolute depth. The HVS is able to combine different cues [243, Chapter 5.5.10], which usually strengthen each other; however, in some situations they can also contradict each other. In such cases, the final 3D scene interpretation represents a compromise between the conflicting cues according to their strength. Although much is unknown about cue integration and the relative importance of cues, binocular disparity and motion parallax (see Section 7.1) are argued to be the most relevant depth cues at typical viewing distances [244]. Fig. 19 depicts the influence of depth cues at different distances. A thorough description of all depth cues is outside the scope of this survey, but the interested reader may refer to [245,246] for detailed explanations.

Current 3D display devices take advantage of one of the most appealing depth cues: binocular disparity. On such screens the 3D perception is, however, only an illusion created on a flat display by showing two different images to both eyes. In such a case, the conflict between depth cues is impossible to avoid. The most
prominent conflict is the accommodation–vergence mismatch (Fig. 20). While vergence—the movement the eyes perform for both to foveate the same point in space—can easily adapt to different depths presented on the screen, accommodation—the change in focus of the eyes—tries to maintain the viewed image in focus. When extensive disparities between left and right eye images drive the vergence away from the screen, the conflict between fixation and focus point arises. It can be tolerated up to the certain degree (within the so-called comfort zone), beyond which it can cause visual discomfort [247]. Based on extensive user studies, Shibata et al. [248] derived a model to predict the zone of comfort. Motion is another potential source of discomfort. Recently, Du and colleagues [249] presented a metric of comfort taking into account disparity, motion in depth, motion on the screen plane, and the spatial frequency of luminance contrast (Fig. 21).

The fact that the depth presented on the 3D screen fits into the comfort zone does not yet assure a perfect 3D experience. The retinal images created in the left and right eyes are misaligned, since they originate from different viewpoints. In order to create a clear and crisp image they need to be fused. The HVS is able to perform the fusion only in a region called Panum’s fusional area (Fig. 20) where relative disparities are not too high; beyond this area double vision (diplopia) is experienced (see e.g., [245, Chapter 5.2]). In fact, binocular fusion is a much complex phenomenon, and it depends on many factors such as individual differences, stimulus properties or exposure duration. For example, people are able to fuse much larger relative disparities for low frequency depth corrugations [250]. The fusion is also easier for stimuli which are well illuminated, have strong texture contrast, or are static.

Assuming that a stereoscopic image is fused by the observer and a single image is perceived, further perception of different disparity patterns depends on many factors. Interestingly, these factors as well as the mechanisms responsible for the interpretation of different disparity stimuli are similar to what is known from luminance perception [252–254]. One of the most fundamental findings from this field is the contrast sensitivity function (CSF, Section 2.1). Similarly, in depth perception a disparity sensitivity function (DSF) exists. Assuming a sinusoidal disparity corrugation with a given frequency, the DSF function defines a reciprocal of the detection threshold, i.e., the smallest amplitude that is visible to a human observer. Both, CSF and DSF, share the same shape, although the DSF has a peak at a different spatial frequency [254]. Another example of similarities is the existence of different receptive fields tuned to specific frequencies of disparity corrugations [246, Chapter 19.6.3]. Also, similar to luminance perception, apparent depth deduced from the disparity signal is dominated by relative disparities (disparity contrast) rather than absolute depth. Furthermore, illusions which are known from brightness perception exist also for disparity. For example, it turns out that the Craik–O’Brien–Cornsweet illusion (Section 2.1) holds for disparity patterns [255,256]. These similarities suggesting that brightness and disparity perception undergo similar mechanisms have recently been explored to build perceptual models for disparity [257,251] (Fig. 22).

6.2. Display architectures

Since in 1838 Charles Wheatstone invented the first stereoscope, the basic idea for displaying 3D images exploiting binocular disparity has not changed significantly. In the real world, people see two images (left and right eye images), and the same has to be reproduced on the screen for the experience to be similar. Wheatstone proposed to use mirrors which reflect two images located off the side. The observer looking at the mirrors sees these two images superimposed. Wheatstone demonstrated that if the setup is correct, the HVS will fuse the two images and perceive them as if looking at a real 3D scene [258,259].

Since then, people have come up with many different ways of showing two different images to both eyes. The most common method is to use dedicated glasses. A set of solutions employ spatial multiplexing: two images are shown simultaneously on the screen, and glasses are used to separate the signal so that each eye sees only one of them. There are different methods of constructing such setup. One possibility is to use different colors for left and right eye (anaglyph stereo). The image on the screen is then composed of two differently tinted images (e.g., red and cyan). The role of the glasses is to filter the signal so a correct image is visible by each eye, using different color filters. Although different filters can be used, due to different colors being shown to both eyes the image quality perceived by the observer is degraded. To avoid it, one can use more sophisticated filters which let through all color components (RGB), but the spectrum of each is slightly shifted and not overlapping to enable easy separation. It is also possible to use polarization to separate left and right eye images. In such solutions, the two images are displayed on a screen with different polarization and the glasses use another set of polarized filters for the separation. Recently, temporal multiplexing gained great attention, especially in the gaming community. In this solution, the left and right eye images are interleaved in the temporal domain and shown in rapid succession. The glasses consist of two shutters which can “open and close” very quickly showing the correct image to each eye. A detailed recent review—which also includes head-mounted displays, not covered here—can be found in [260].

Glasses-based solutions have many problems, e.g., reduced brightness, resolution or color shift. However, a bigger disadvantage is the need to wear additional equipment. Whereas this is not a significant problem in movie theaters, people usually do not feel comfortable wearing 3D glasses at home or in other public places. A big hope in this context is glasses-free solutions. So-called autostereoscopic displays can show two different images simultaneously, the visibility of which depends on the viewing position. This is usually achieved by placing a parallax barrier or a lenslet array in front of the display panel. We cover these technologies in
A stereoscopic version of the content is not always desired by all observers. This can be due to different reasons, e.g., lack of additional equipment, lack of tolerance for such content, or comfort. An interesting problem is thus to provide a solution which enables both 2D and 3D viewing at the same time, the so-called \textit{backward-compatible stereo} [257]. An early approach in this direction was to use color glasses with color filters which minimize ghosting when the content is observed without them; for example, amber and blue filters can be used (ColorCode 3-D). When the 3D content is viewed with the glasses, enough signal is provided to both eyes to create a good 3D perception. However, when the content is viewed without the glasses, the blue channel does not contribute much to the perceived image, and the ghosting is hardly visible. Recently, another interesting hardware solution was provided [261] that improves over the shutter-based solution. Instead of interleaving two images, there is an additional third image which is a negative of one of the two original ones. The 3D glasses are synchronized so that the third image is imperceptible for any eye if the glasses are worn. However, when the observer views the content without the glasses, the third image, due to the temporal integration performed by the HVS (Section 5.1), cancels one of the images of the stereoscopic pair, and only one of them is visible (see Fig. 23).

6.3. Software solutions for improving depth reproduction

In the real world, the HVS can easily adapt to objects at different depths. However, due to the fundamental limitations of stereoscopic displays, it is not possible to reproduce the same 3D experience on current display devices. Therefore, a special care has to be taken while preparing content for a stereoscopic screen. Such content needs to provide a compelling 3D experience while maintaining viewing comfort. A number of methods have been proposed to perform this task efficiently. The main goal of all these techniques is to fit the depth range spanned by the real scene to the comfort zone of a display device, which highly depends on the viewing setup [248] (e.g., viewing distance, screen size, etc.). This can be performed at different stages of content creation, i.e., during capture or in a post-processing step.
The first group of methods which enables stereoscopic content adjustment are techniques that are applied during the capturing stage. The adjustments are usually performed by changing camera parameters, i.e., interaxial distance—the distance between cameras—and convergence—the angle between the optical axes of the cameras. Changing the first one affects the disparity range by either expanding it or reducing it (smaller interaxial distances result in smaller disparity ranges). The convergence, on the other hand, is responsible for the relative positioning of the scene with respect to the screen plane. Jones et al. [262] proposed a mathematical framework defining the exact modification to camera parameters that need to be applied in order to fit the scene into the desired disparity range. More recently, Oskam et al. [263] proposed a similar approach for real-time applications in which they formulated the problem of camera parameters adjustment as an optimization framework. This allowed them not only to fit the scene into a given disparity range but also to take into account additional artists’ design constraints. Apart from that, they also demonstrated how to deal with temporal coherence of such manipulations in real-time scenarios. An interesting system was presented by Heinzle et al. [264]. Their complete camera rig provides an intuitive and easy-to-use interface for controlling stereoscopic camera parameters; the interface collects high-level feedback from the artists and adjusts the parameters automatically. In practice, it is also possible to record the content with multiple camera setups, e.g., a different one for background and foreground, and the different video streams combined during the compositing stage. A big advantage of techniques which directly modify the camera parameters is that they can also compensate for object distortions arising from the wrong viewing position [265].

The aforementioned methods are usually a satisfactory solution if the viewing conditions are known in advance. However, in many scenarios, the content captured with a specific camera setup, i.e., designed for a particular display, is also viewed on different screens. To fully exploit the available disparity range, post-processing techniques are required to re-synthesize the content as if it were captured using different camera parameters. Such disparity retargeting methods usually work directly on disparity maps to either compress or expand disparity range. An example of such techniques was presented by Lang et al. [266]. By analogy to tone-mapping operators (Section 2.3), they proposed to use different mapping curves to change the disparity values. The mapping can be done according to differently designed curves (e.g., linear or logarithmic curves). It can also be performed in the gradient domain. In order to improve depth perception of important objects, they also proposed to incorporate saliency prediction into the curve design. The problem of computing adjusted stereo images is formulated as an optimization process that guides a mesh-based warp according to the edited disparity maps. It is also possible to use more explicit methods which do not involve optimization [242].

Recently, perceptual models for disparity have been proposed [257,251]. With their aid, disparity values can be transformed into a perceptually uniform space, where they can be mapped to fit a desired disparity range. Essentially, the disparity range is reduced while preserving the disparity signal whenever it is most relevant for the HVS. Perceptual models of disparity can additionally be used to build metrics which can evaluate perceived differences in depth between an original stereo image and its modified version. This allows for defining the disparity remapping problem as an optimization process where the goal is to fit disparities into a desired range while at the same time minimizing perceived distortions [251]. As the metrics can also account for different luminance patterns, such methods were shown to perform well for automultiscopic displays where the content needs to be filtered to avoid inter-view aliasing [267]. More about adopting content for such screens can be found in Section 7.3. Disparity models also enable depth perception enhancement. For example, when the influence of luminance patterns on disparity perception is taken into account [251], it is possible to enhance depth perception in regions where it is weakened due to insufficient texture. This can be done by introducing additional luminance information.

One of the most aggressive methods for stereo content manipulation is microstereopsis. Proposed by Siegel et al. [268], this technique reduces the camera distance to a minimum so that a stereo image has just enough disparity to create a 3D impression. This solution can be useful in the context of backward-compatible stereo because the ghosting artifacts during monoscopic presentation are significantly reduced. Didyk et al. [257,269] proposed another stereo content manipulation technique for backward-compatible stereo. Their method uses the Craik–O’Brien–Cornsweet illusion to reproduce disparity discontinuities. As a result, the technique significantly reduces possible ghosting when the content is viewed without stereoscopic equipment, but a good 3D perception can be achieved when the content is viewed with the equipment. It is also possible to enhance depth impression by introducing Cornsweet profiles atop of the original disparity signal. Fig. 24 shows examples of these techniques.

All aforementioned techniques for stereoscopic content adjustment do not analyze how much such manipulations affect motion perception. Recently, Kellnhofer et al. [270] proposed a technique for preventing visible motion distortions due to disparity manipulations. Besides, previously mentioned techniques are mostly

Fig. 25. Two examples of automultiscopic displays. Left: sweeping-based light field display supporting occlusions and correct perspective [280] (TIE fighter copyright LucasArts). Right: volumetric display employing water drops as a projection substrate, here showing an interactive Tetris game [281] (image copyright ACM 2010).
concerned with the disparity signal introduced by scene geometry. However, extensive disparities can also be created by secondary light effects such as reflection. Templin et al. [271] proposed a technique that explicitly accounts for the problem of glossy reflections in stereoscopic content. Their technique prevents viewing discomfort due to extensive disparities coming from such reflections, while maintaining at the same time their realistic look (Fig. 25).

7. Improving angular resolution II: automultiscopic displays

Automultiscopic displays, capable of showing stereo images from different viewpoints without the need to wear glasses or other additional equipment, have been a subject of much research throughout the last century. A recent state-of-the-art review on 3D displays including glasses-free techniques can be found in [260]. We briefly outline these technologies and discuss in more detail the most recent developments on light field displays, both in terms of hardware and of content generation. In this survey, we do not discuss holographic imaging techniques (e.g., [272]), which present all depth cues, but are expensive and primarily restricted to static scenes viewed under controlled illumination [273].

7.1. Perceptual considerations

As discussed in Section 6.1, there is a large number of cues the HVS utilizes to infer the (spatial layout and) depth of a scene (Fig. 19). Here we focus on motion parallax, which is the most distinctive cue of automultiscopic displays, not provided by conventional stereoscopic or 2D displays.

Motion parallax enables us to infer depth from relative movement. Specifically, it refers to the movement of an image projected in the retina as the object moves relative to the viewer; this movement is different depending on the depth at which the object is with respect to the viewer, and the velocity of the relative motion. Depth perception from motion parallax exhibits a close relationship in terms of sensitivity with that of binocular disparity, suggesting similar underlying processes for both depth cues [274,275]. Existing studies on sensitivity to motion parallax are not as exhaustive as those on disparity, although several experiments have been conducted to establish motion parallax detection thresholds [276]. The integration of both cues, although still largely unknown, has been shown to be nonlinear [277].

Consistent vergence–accommodation cues and motion parallax are required for a natural comfortable 3D experience [278]. Automultiscopic displays, potentially capable of providing these cues, are emerging as the new generation of displays, although limitations persist, as discussed in the next subsection. Additional issues that may hinder the viewing experience in automultiscopic displays are crosstalk between views, moire patterns, or the cardboard effect [278,279].

7.2. Display architectures

Volumetric displays: Blundell and Schwartz [282] define a volumetric display as permitting “the generation, absorption, or scattering of visible radiation from a set of localized and specified regions within a physical volume”. Many volumetric displays exploit high-speed projection synchronized with mechanically rotated screens. Such swept volume displays were proposed as early as 1912 [283] and have been continuously improved [284]. Designs include the Seelinder [285], exploiting a spinning cylindrical parallax barrier and LED arrays, and the work of Maeda et al. [286], utilizing a spinning LCD panel with a directional privacy filter. Several designs have eliminated moving parts using electronic diffusers [287], projector arrays [288], and beam-splitters [289]. Whereas others consider projection onto transparent
Light field displays: Light field displays generally aim to create motion parallax and stereoscopic disparity so that an observer perceives a scene as 3D without having to wear encumbering glasses. Invented more than a century ago, the two fundamental principles underlying most light field displays are parallax barriers [2] and integral imaging with lenslet arrays [292]. The former technology has evolved into fully dynamic display systems supporting head tracking and view steering [293,294], as well as high-speed temporal modulation [295]. Today, lenslet arrays are often used as programmable rear-illumination in combination with a high-speed LCD to steer different views toward tracked observers [296]. Not strictly a volumetric display, but also based on a spinning display surface, Jones et al. [280] instead achieve a light field display (Fig. 26, left) which preserves accurate perspective and occlusion cues, often not present in volumetric displays. The display utilizes an anisotropic diffusing screen and user tracking, and exhibits horizontal parallax only.

Compressive light field displays: Through the co-design of display optics and computational processing, compressive displays strive to transcend limits set by purely optical designs. It was recently shown that tomographic light field decompositions displayed on stacked films of light-attenuating materials can create higher resolutions than previously possible [298]; and the same underlying approach later applied to stacks of LCDs for displaying dynamic content [299]. A compression is achieved in the number of layer pixels, which is significantly smaller than the number of emitted light rays. Low-rank light field synthesis was also demonstrated for dual-layer [295] and multi-layer displays with directional backlighting [297]. In these display designs, an observer perceptually averages over a number of patterns (shown in Fig. 26 for a so-called tensor display) that are displayed at refresh rates beyond the critical flicker frequency of the HVS (see Section 5.1). The limited temporal resolution of the HVS is directly exploited by decomposing a target light field into a set of patterns, by means of nonnegative matrix or tensor factorization, and presenting them on high-speed spatial light modulators; this creates a perceived low-rank approximation of the target light field.

Light field displays supporting accommodation: Displays supporting correct accommodation are able to create a light field with enough angular resolution to allow subtle, yet crucial, variation over the pupil. Such displays utilize three main approaches. Ultra-high angular resolution displays, such as super-multiview displays [300–302] (Fig. 29), take a brute-force approach: all possible views are generated and displayed simultaneously, incurring high hardware costs. In practice, this has limited the size, field of view, and spatial resolution of the devices. Multi-focal displays [289,303,304] virtually place conventional monitors at different depths via refractive optics. This approach is effective, but requires encumbering glasses. Volumetric displays [283,280,284] also support accommodative depth cues, but usually only within the physical device: current volumetric approaches are not scalable past small volumes. Most recently a compressive accommodation display architecture was proposed [305]. This approach is capable of generating near correct accommodation cues with high spatial resolution over a wide field of view using multi-layer display configurations that are combined with high angular resolution backlighting and driven by nonnegative light field tensor factorizations. Finally, Lanman and Luebke recently presented a near-eye light field display capable of presenting accommodation, convergence, and binocular disparity depth cues; it is a head-mounted display (HMD) with a thin form-factor [306].

7.3. Image synthesis for automultiscopic displays

Stereoscopic displays pose a challenge in what regards to content generation because of the need to capture or render two views, the positioning of the cameras or the content post-processing (Section 6.3). Multiview content shares these challenges, augmented by additional issues derived from the size of the input data, the computation needed for image synthesis, and the intrinsic limitations that these displays exhibit.

Although targeted to parallax barriers and lenslet array displays, Zwicker et al. [267] were one of the first to address the problem of reconstructing a captured light field to be shown on light field displays, building on previous work on plenoptic sampling [307,308]. They proposed a resampling filter to avoid the aliasing derived from limited angular resolution, and derived optimal camera parameters for acquisition.

Ranieri et al. [309] propose an efficient rendering algorithm for multi-layer automultiscopic displays which avoids the need for an optimization process, common in compressive displays. The algorithm is simple, essentially assigning each ray to the display layer closest to the origin and then filtering for antialiasing; they have to
assume, however, depth information of the target light field to be known. Similar to this algorithm, but generalized to an arbitrary number of emissive and modulating layers, and with a more sophisticated handling of occlusions, is the decomposition algorithm for rendering light fields in [310].

Compressive displays, described in Section 7.2, typically require taking a target 4D light field as input and solving an optimization problem for image synthesis. This involves a large amount of computation, currently unfeasible in real time for high angular and spatial resolutions. To overcome the problem, Heide et al. [311] recently proposed an adaptive optimization framework which combines the rendering and optimization of the light field into a single framework. The light field is intelligently sampled leveraging display-specific limitations and the characteristics of the scene to be displayed, allowing to significantly lower computation time and bandwidth requirements (see Fig. 27). The method is not limited to compressive multiview displays, but can also be applied to high dynamic range displays or high resolution displays.

In the production of stereo content, a number of techniques exist that generate a stereo pair from a single image. This idea has been extended to automultiscopic displays, Singh and colleagues [312] propose a method to generate, from existing stereo content, the patterns to display in a glasses-free two-layer automultiscopic display to create the 3D effect. Their main contribution lies in the stereo matching process (performed to obtain a disparity map),

![Fig. 28. 3D content retargeting for automultiscopic displays allows for a sharp representation of the images within the depth budget of the display, while retaining the original sensation of depth [314].](image1)

![Fig. 29. Tailored displays can enhance visual acuity. For each scene, from left to right: input image, images perceived by a farsighted subject on a regular display, and on a tailored display [302] (image copyright ACM 2012).](image2)
specially tailored to the characteristics of a multi-layer display to achieve temporal consistency and accuracy in the disparity map. Depth estimation can, however, be a source of artifacts with current methods. To overcome this problem, Didyk et al. [313] proposed a technique that expands a standard stereoscopic content to a multi-view stream avoiding depth estimation. The technique combines both, view synthesis and filtering for anti-aliasing into one filtering step. The method can be performed very efficiently, reaching a real-time performance.

Content retargeting refers to the algorithms and methods that aim at adapting content generated for a specific display to another display that may be different in one or more dimensions: spatial, angular or temporal resolution, contrast, color, depth budget, etc. [315,316]. An example in automultiscopic displays is the first spatial resolution retargeting algorithm for light fields, proposed by Birklbauer and Bimber [317]; it is based on seam carving and does not require knowing or computing a depth map of the scene. Disparity retargeting for stereo content is discussed in Section 6.3. Building on this literature on retargeting of stereo content, a number of approaches have emerged that perform disparity remapping on multiview content (light fields). The need for these algorithms can arise from viewing comfort issues, artistic decisions in the production pipeline, or display-specific limitations. Automultiscopic displays exhibit a limited depth-of-field which is a consequence of the need to filter the content to avoid inter-view aliasing. As a result, the depth range within which images can be shown appearing sharp is constrained, and depends on the type and characteristics of the display itself: depth-of-field expressions have been derived for different types of displays [267,298,297].

One of the first to address depth scaling in multiview images were Kim et al. [318]. Given the multiview images and the target scaled depth, their algorithm warps the multiview content and performs hole filling whenever disocclusions are present. More sophisticated is the method by Kim and colleagues for manipulating the disparity of stereo pairs given a 3D light field (horizontal parallax only) of the scene [319]. They build an EPI (epipolar-plane image) volume, and compute optimal cuts through it based on different disparity remapping operators. Cuts correspond to images with multiple centers of projection [320], and the method can be applied both to stereo pairs and to multiview images, by performing two or more cuts through the volume according to the corresponding disparity remapping operator. As an alternative, perceptual models for disparity which have recently been developed [257,251] can also be applied to disparity remapping for automultiscopic displays. This is explained in more detail in Section 6.3, but essentially these models allow to leverage knowledge on the sensitivity to disparity of the HVS to fit disparity into the constraints imposed by the display. Leveraging Didyk et al.’s model [257], together with a perceptual model for contrast sensitivity [321], and incorporating display-specific depth-of-field functions, Masia et al. [322,314] propose a retargeting scheme for addressing the trade-off between image sharpness and depth perception in these displays (Fig. 28).

7.4. Applications

In this subsection, we discuss additional applications of light field displays: human computer interaction and vision-correcting image display.

Interactive light field displays: Over the last few years, interaction capabilities with displays have become increasingly important. While light field displays facilitate glasses-free 3D displays where virtual objects are perceived as floating in front of and behind the physical device, most interaction techniques focus on either on-screen (multi-touch) interaction or mid-range and far-range gesture-based interaction facilitated by computational photography techniques, such as depth-sensing cameras, or depth-ranging sensors like Kinect™. Computational display approaches to facilitating mid-range interaction have been proposed. These integrate depth sensing pixels directly into the screen of a light field display by splitting the optical path of a conventional lenslet-based light field display such that a light field is emitted and simultaneously recorded through the same lenses [323,324]. Alternatively, light field display and capture mode can be multiplexed in time using a high-speed liquid crystal panel as a bidirectional 2D display and a 4D parallax barrier-based light field camera [325].

Vision-correcting displays: Light field displays have recently been introduced for the application of correcting the visual aberrations of an observer (Fig. 29). Early approaches attempt to filter a 2D image presented on a conventional screen with the inverse point spread function (PSF) of the observer’s eye [326–328]. Although these methods slightly improve image sharpness, contrast is reduced; fundamentally, the PSF of an eye with refractive errors is a low-pass filter—high image frequencies are irreversibly canceled out in the optical path from display to the retina. To overcome this limitation, Pamplona et al. [302] proposed the use of conventional light field displays with lenslet arrays or parallax barriers to correct visual aberrations. For this application, these devices must provide a sufficiently high angular resolution so that multiple light rays emitted by a single lenslet enter the pupil. This resolution requirement is similar for light field displays supporting accommodation cues. Unfortunately, conventional light field displays as used by Pamplona et al. [302] are subject to a spatio-angular resolution tradeoff: an increased angular resolution decreases the spatial resolution. Hence, the viewer sees a sharp image but at a significantly lower resolution than that of the screen. To mitigate this effect, Huang et al. [329] recently proposed to use multi-layer display designs together with pre-filtering. While this is a promising, high-resolution approach, combining prefiltering and these particular optical setups significantly reduces the resulting image contrast.

8. Conclusion and outreach

We have presented a thorough literature review of recent advances in display technology, categorizing them along the multiple dimensions of the plenoptic function. Additionally, we have introduced the key aspects of the HVS that are relevant and/or leveraged by some of the new technologies. For readers also seeking an in-depth look into hardware descriptions, domain-specific books exist covering aspects such as physics or electronics, particular technologies like organic light-emitting diode (OLED), liquid crystal, LCD backlights or mobile displays [10,11], or even how to build prototype compressive light field displays [330].

Advances in display technologies run somewhat parallel to advances in capture devices: exploiting the strong correlations between the dimensions of the plenoptic function has allowed researchers and engineers to overcome basic limitations of standard capture devices. Examples of these include color demosaicing, or video compression [47]. The fact that both capture and display technologies are following similar paths makes sense, since both share the problem of the high dimensionality of the plenoptic function. In this regard, both fields can be seen as two sides of the same coin. On the other hand, advances in one will foster further research in the other: for instance, HDR displays have already motivated the invention of new HDR capture and compression algorithms, which in turn will create a demand for better HDR displays. Similarly, a requirement for light field displays to really take
off is that light field content becomes more readily available (with companies like Lytro™ and Raytrix™ pushing in that direction).

Our categorization in this survey with respect to the plenoptic function is a convenient choice to support our current view of the field, but it should not be seen as a rigid scheme. We expect this division to become increasingly blurrier over the next few years, as some of the most novel technologies mature, coupled with superior computational power and a better knowledge of the HVS. The most important criteria nowadays for the consumer market seem to be spatial resolution, contrast, angular resolution (3D) and refresh rates.

High definition (ultra-high spatial resolution) is definitely one of the main current trends in the industry. A promising technology is based on IGZO (Indium Gallium Zinc Oxide), a transparent amorphous oxide semiconductor (TAOS) whose TFT (Thin Film Transistor) performance increases electron mobility up to a factor of 50. This can lead to an improvement in resolution of up to ten times, plus the ability to fabricate larger displays [331]. Additionally, TAOS can be flexed, and have a lower consumption of power during manufacturing, because they can be fabricated at room temperature. The technology has already been licensed by JST (the Japan Science and Technology Agency) to several display manufacturing companies.

Other technologies have their specific challenges to meet before they become the driving force of the industry towards the consumer market. In the case of increased contrast, power consumption is one stumbling block for HDR displays, also shared by some types of automultiscopic displays. LCD panels transmit about 3% of light for pixels that are full on, which means that a lot of light is transduced into heat. For HDR displays, this translates into lots of energy consumed and wasted. OLED technology is a good candidate as a viable, more efficient technology. In the case of automultiscopic displays, parallax barriers entail very low light throughput as well, whereas LCD-based multi-layer approaches multiply the efficiency problem times the number of LCD panels needed. While the field is very active, major challenges of automultiscopic displays that remain and have been discussed in this review include the need for a thin form factor, a solution to the currently still low spatio-angular resolution, limited depth of field, or the need for easier generation and transmission of the content.

While we have shown the recent advances and progress lines in each plenoptic dimension, we believe that real advances in the field need to come from a holistic approach to the problem: instead of focusing on one single dimension of the plenoptic function, future displays need to and will tackle several dimensions at the same time. For instance, current state-of-the-art broadcast systems achieve Ultra High Definition (UHD) with 8K at 120 Hz progressive, with a deeper color gamut (Rec. 2020) than High Definition standards. This represents a significant advance in terms of spatial resolution, temporal resolution, and color. Similarly, we have seen how dynamic range and color appearance models, formerly two separate fields, are now being analyzed in conjunction in recent works, or how fast changes in the temporal domain can help increase apparent spatial resolution. Stereo techniques can be seen as just a particular case of automultiscopic displays, and these need to analyze spatial and angular resolution jointly. Joint stereoscopic high dynamic range displays (SHDR, also known as 3D-HDR) are also being developed and studied. This is the trend for the future.

As technology advances, some of the inherent limitations of current displays (such as bandwidth in the case of light field displays) will naturally vanish, or progressively become less restricting. However, while some advances will rely purely on novel technology, optics and computation, we believe that perceptual aspects will continue to play a key role. Understanding the mechanisms of the HVS will be a crucial factor on which design decisions will be taken. For instance, SHDR directly involves the luminance contrast and angular dimensions of the plenoptic function. However, the perception of depth in high dynamic range displays is still not well known; some works have even hypothesized that HDR content may hinder stereo acuity [332]. In any case it is believed that the study of binocular disparity alone, on which most of the existing research has focused, is not enough to understand the perception of a 3D structure [333]. Although we are gaining a more solid knowledge on how to combat the vergence–accommodation conflict, or what components in a scene may introduce discomfort to the viewer, key aspects of the HVS such as cue integration, or the interrelation of the different visual signals, remain largely unexplored. As displays become more sophisticated and advanced, a deeper understanding of our visual system will be needed, including hard-to-measure aspects such as viewing comfort.

Last, a different research direction which has seen some first practical implementations aims at integrating the displayed imagery with the physical world, blurring out the boundaries imposed by the form factors of more traditional displays. Examples of this include systems that augment the appearance of objects by means of superimposed projections [334,335]; compositing real and synthetic objects in the same scene, taking into account interreflections between them [336]; adjusting the appearance of the displayed content according to the incident real illumination [337]; or allowing for gestured-based interaction [325]. Some of these approaches rely on the integration and combined operation of displays, projectors and cameras, all of them enhanced with computational capabilities. This is another promising avenue of future advances, although integrating hardware from different manufacturers may impose some additional practical difficulties. Another exciting, recent technology is printed optics [338,339], which enables display, sensing and illumination elements to be directly printed inside an interactive device. While still in its infancy, this may open up a whole new field, where every object will in the future act as a display.

To summarize, we believe that future displays will rely on joint advances on several different dimensions. Additional influencing factors include further exploration of aspects such as polarization, or multispectral imaging; new materials; the adaptation of mathematical models for high-performance real-time computation; or the co-design of custom optics and electronics. We are convinced that a deeper understanding of the HVS will play a key role as well, with perceptual effects and limitations being taken into account in future display designs. Display technology encompasses a very broad field which will benefit from close collaboration from the different areas of research involved. From hardware specialists to psychophysicists, including optics experts, material scientists, or signal processing specialists, multidisciplinary co-operation will be the key.

Acknowledgments

We would like to thank the reviewers for their valuable feedback, and Erik Reinhard for his insightful comments on HDR imaging. We would also like to thank Robert Simon for sharing the photographs of the double portrait, as well as the authors who granted us permission to use images from their techniques. This research has been funded by the EU through the projects GOLEM (grant no.: 251415) and VERVE (grant no.: 288914). Belen Masia was additionally funded by an FPU grant from the Spanish Ministry of Education and by an NVIDIA Graduate Fellowship. Gordon Wetzstein was supported by an NSERC Postdoctoral Fellowship.

