
i
i

i
i

i
i

i
i

Practical Morphological
Anti-Aliasing

Jorge Jimenez, Belen Masia,

Jose I. Echevarria, Fernando Navarro

and Diego Gutierrez

The use of anti-aliasing techniques is crucial when producing high qual-
ity graphics. Up to now, multisampling anti-aliasing (MSAA) remains
the most extended solution offering superior results in real time. How-
ever, there are important drawbacks to the use of MSAA in certain sce-
narios. First, the increase in processing time it implies is not negligible
at all. Further, limitations of MSAA include the impossibility, in a wide
range of platforms, of activating multisampling when using multiple render
targets (MRT), on which fundamental techniques such as deferred shad-
ing [Shishkovtsov 05,Koonce 07] rely. Even on platforms where MRT and
MSAA can be simultaneously activated (i.e. DirectX 10), implementation
of MSAA is neither trivial nor cost-free [Thibieroz 09]. Besides, MSAA
poses a problem for the current generation of consoles. In the case of the
Xbox 360, memory constraints force the use of CPU-based tiling techniques
in case high resolution frame buffers need to be used in conjunction with
MSAA; whereas on the PS3 multisampling is usually not even applied.
Another drawback of MSAA is its inability to smooth non-geometric edges
such as those resulting from the use of alpha testing, frequent when ren-
dering vegetation. As a result, when using MSAA, vegetation can only be
anti-aliased if alpha to coverage is used. Finally, multisampling requires
extra memory, which is always a valuable resource, especially on consoles.

As a response to the limitations described above, a series of techniques
have implemented anti-aliasing solutions in shader units, the vast major-
ity of them being based in edge detection and blurring. In S.T.A.L.K.E.R
[Shishkovtsov 05], edge detection is performed by calculating differences
in the 8-neighborhood depth values and the 4-neighborhood normal an-
gles; then, edges are blurred using a cross-shaped sampling pattern. A
similar, improved scheme is used in Tabula Rasa [Koonce 07], where edge
detection uses threshold values that are resolution independent, and the
full 8-neighborhood of the pixel is considered for differences in the normal

1

i
i

i
i

i
i

i
i

2 1. Practical Morphological Anti-Aliasing

angles. In Crysis [Sousa 07], edges are detected using depth values, and
rotated triangle samples are used to perform texture lookups using bilinear
filtering. These solutions alleviate the aliasing problem but do not miti-
gate it completely. Finally, in Killzone 2 samples are rendered into a double
horizontal resolution G-buffer. Then, in the lighting pass, two samples of
the G-buffer are queried for each pixel of the final buffer. The resulting
samples are then averaged and stored in the final buffer. However, this
implies executing the lighting shader twice per final pixel.

In this article we present an alternative technique that avoids most
of the problems described above. The quality of our results lies between
4x and 8x MSAA at a fraction of the time and memory consumption.
It is based on morphological anti-aliasing [Reshetov 09], which relies on
detecting certain image patterns to reduce aliasing. However, the original
implementation is designed to be run in a CPU and requires the usage of
list structures which are not GPU-amenable.

Since our goal is to achieve real-time practicality in games with current
mainstream hardware, our algorithm implements aggressive optimizations
that provide an optimal trade-off between quality and execution times.
Reshetov searches for specific patterns (U-shaped, Z-shaped and L-shaped
patterns) which are then decomposed into simpler ones, an approach which
would be impracticable on GPU. We realize that the pattern type, and thus
the anti-aliasing to be performed, only depends on 4 values, which can be
obtained for each edge pixel (edgel) with only two memory accesses. This
way, the original algorithm is transformed so that it uses texture structures
instead of lists (see Figure 1.1). Furthermore, this approach allows to
handle all pattern types in a symmetric way, thus avoiding the need to
decompose them into simpler ones. In addition, pre-computation of certain
values into textures allows for an even faster implementation. Finally, in
order to accelerate calculations, we make extensive use of hardware bilinear
interpolation for smartly fetching multiple values in a single query, and
provide means of decoding the fetched values into the original unfiltered
values. As a result, our algorithm can be efficiently executed by a GPU,
has a moderate memory footprint and can be integrated as part of the
standard rendering pipeline of any game architecture.

Some of the optimizations presented in this work may seem to add
complexity at a conceptual level, but as our results show, their overall
contribution makes them worth including. Our technique yields image
quality between 4x and 8x MSAA, with a typical execution time of 3.79
ms on Xbox 360 and 0.44 ms on a nVIDIA GeForce 9800 GTX+, for a
resolution of 720p. Memory footprint is 2x the size of the backbuffer on
Xbox 360 and 1.5x on the 9800 GTX+. According to our measurements,
8x MSAA takes an average of 5 ms per image on the same GPU at the
same resolution, that is, our algorithm is 11.80x faster.

i
i

i
i

i
i

i
i

1.1. Overview 3

In order to show the versatility of our algorithm, we have implemented
the shader both for Xbox 360 and PC, using DirectX 9 and 10 respectively.
The code presented in this article is that of the DirectX 10 version.

1.1 Overview

The algorithm searches for patterns in edges which then allow us to re-
construct the anti-aliased lines. This can, in general terms, be seen as a
re-vectorization of edges. In the following we give a brief overview of our
algorithm.

First, edge detection is performed using depth values (alternatively,
luminances can be used to detect edges; this will be further discussed in
Section 1.2.1). We then compute, for each pixel belonging to an edge, the
distances in pixels from it to both ends of the edge to which the edgel
belongs. These distances define the position of the pixel with respect to
the line. Depending on the location of the edgel within the line, it will or
will not be affected by the anti-aliasing process. In those edgels which have
to be modified (those which contain yellow or green areas in Figure 1.2,
left) a blending operation is performed according to the following equation:

cnew = (1 − a) · cold + a · copp, (1.1)

where cold is the original color of the pixel, copp is the color of the pixel on
the other side of the line, cnew is the new color of the pixel, and a is the
area shown in yellow in Figure 1.2, left. The value of a is a function of both
the pattern type of the line and the distances to both ends of the line. The
pattern type is defined by the crossing edges of the line, i.e. edges which
are perpendicular to the line and thus define the ends of it (vertical green
lines in Figure 1.2). In order to save processing time we precompute this
area and store it as a two-channel texture which can be seen in Figure 1.2,
right (see Section 1.3.3 for details).

The algorithm is implemented in three passes, which are explained in
detail in the following sections. In the first pass edge detection is performed,
yielding a texture containing edgels (see Figure 1.1, center left). In the
second pass the corresponding blending weight1 (that is, value a) for each
pixel adjacent to the edge being smoothed is obtained (see Figure 1.1, center
right). To do this, we first detect the pattern types for each line passing
through the north and west boundaries of the pixel and then calculate
the distances of each pixel to the crossing edges; these are then used to
query the precomputed area texture. The third and final pass involves

1Throughout the article blending weight and area will be used indistinctively.

i
i

i
i

i
i

i
i

4 1. Practical Morphological Anti-Aliasing

Original Image Edges texture Blending weights
texture

Anti-aliased Image

Figure 1.1. Starting from an aliased image (left) edges are detected and stored
in the edges texture (center left). The color of each pixel depicts where edges
are: green pixels have an edge at their top boundary, red pixels at their left
boundary, and yellow pixels have edges at both boundaries. The edges texture
is then used in conjunction with the precomputed area texture to produce the
blending weights texture (center right) in the second pass. This texture stores
the weights for the pixels at each side of an edgel in the RGBA channels. In the
third pass, blending is performed to obtain the final anti-aliased image (right).

Figure 1.2. Left: Anti-aliasing process. Color copp bleeds into cold according to
the area a below the blue line. Right: Texture containing the precomputed areas.
The texture uses two channels to store areas at each side of the edge, i.e. for a
pixel and its opposite (pixels (1, 1) and (1, 2) on the left). Each 9× 9 subtexture
corresponds to a pattern type. Inside each of these subtextures (u, v) coordinates
encode distances to the left and to the right, respectively.

blending each pixel with its 4-neighborhood using the blending weights
texture obtained in the previous pass.

The last two passes are performed separately to spare calculations, tak-
ing advantage of the fact that two adjacent pixels share the same edgel.
To do this, in the second pass, pattern detection and the subsequent area
calculation are performed on a per-edgel basis. Finally, in the third pass,
the two adjacent pixels will fetch the same information.

Additionally, using the stencil buffer allows us to perform the second
and third passes only for the pixels which contain an edge, considerably
reducing processing times.

i
i

i
i

i
i

i
i

1.2. Detecting Edges 5

1.2 Detecting Edges

We perform edge detection using the depth buffer (or luminance values
if depth information is not available). For each pixel, the difference in
depth with respect to the pixel on top and on the left is obtained. We can
efficiently store the edges for all the pixels in the image this way, given the
fact that two adjacent pixels have a common boundary. This difference
is thresholded to obtain a binary value, which indicates whether an edge
exists in a pixel boundary. This threshold, which varies with resolution,
can be made resolution independent [Koonce 07]. Then, the left and top
edges are stored, respectively, in the red and green channels of the edges
texture, which will be used as input for the next pass.

Whenever using depth-based edge detection, a problem may arise in
places where two planes at different angles meet: the edge will not be
detected because of samples having the same depth. A common solution
to this is the addition of information from normals. However, in our case
we found the improvement in quality obtained when using normals was not
worth the increase in execution time it implied.

1.2.1 Using luminance values for edge detection

An alternative to depth-based edge detection is the use of luminance infor-
mation to detect image discontinuities. Luminance values are derived from
the CIE XYZ standard:

L = 0.2126 ·R + 0.7152 ·G + 0.0722 ·B (1.2)

Then, for each pixel, the difference in luminance with respect to the
pixel on top and on the left is obtained, the implementation being equiv-
alent to that of depth-based detection. When thresholding to obtain a
binary value, we found 0.1 to be an adequate threshold for most cases.
It is important to note that using either luminance- or depth-based edge
detection does not affect the following passes.

Although quality-wise both methods offer similar results, depth-based
detection is more robust, yielding a more reliable edges texture. Besides,
our technique takes, on average, 10% less time when using depth than when
using luminances. Luminances, in turn, are useful when depth information
cannot be accessed, thus making it a more universal approach. Further,
when performing depth-based detection, edges in shading will not be de-
tected, whereas luminance-based detection allows us to anti-alias shading
and specular highlights. In general terms, one could say that luminance-
based detection works in a more perceptual way, as it smoothes visible
edges. As an example, when dense vegetation is present, using luminances
is faster than using depth (around 12% faster for the particular case shown

i
i

i
i

i
i

i
i

6 1. Practical Morphological Anti-Aliasing

f loat4 EdgeDetectionPS (f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat D = depthTex .SampleLevel (PointSampler ,
texcoord , 0) ;

f loat Dle f t = depthTex .SampleLevel (PointSampler ,
texcoord , 0 , −i n t 2 (1 , 0)) ;

f loat Dtop = depthTex .SampleLevel (PointSampler ,
texcoord , 0 , −i n t 2 (0 , 1)) ;

// We need the se f o r updat ing the s t e n c i l b u f f e r .
f loat Dright = depthTex .SampleLevel (PointSampler ,

texcoord , 0 , i n t2 (1 , 0)) ;
f loat Dbottom = depthTex .SampleLevel (PointSampler ,

texcoord , 0 , i n t2 (0 , 1)) ;

f loat4 d e l t a = abs (D. xxxx −
f loat4 (Dle f t , Dtop , Dright , Dbottom)) ;

f loat4 edges = step (th r e sho ld . xxxx , d e l t a) ;

i f (dot (edges , 1 . 0) == 0 . 0) {
d i s ca rd ;

}

return edges ;
}

Listing 1.1. Edge Detection Shader.

in Figure 1.5, bottom row), since a lot more edges are detected when using
depth. Optimal results in terms of quality, at the cost of a higher execution
time, can be obtained by combining luminance, depth and normal values.

Listing 1.1 shows the source code of this pass, using depth-based edge
detection. Figure 1.1, center left, is the resulting image of the edge detec-
tion pass, in this particular case using luminance-based detection, as depth
information is not available.

1.3 Obtaining Blending Weights

In order to calculate the blending weights we first search for the distances
to the ends of the line the edgel belongs to, using the edges texture obtained
in the previous pass (see Section 1.3.1). Once these distances are known,
we can use them to fetch the crossing edges at both ends of the line (see
Section 1.3.2). These crossing edges indicate the type of pattern we are
dealing with. Both the distances to the ends of the line and the type of
pattern are used to access the pre-calculated texture (see Section 1.3.3) in

i
i

i
i

i
i

i
i

1.3. Obtaining Blending Weights 7

which we store the areas which are used as blending weights for the final
pass.

As mentioned before, to share calculations between adjacent pixels, we
take advantage of the fact that two adjacent pixels share the same boundary
and perform area calculation on a per-edgel basis. However, even though
two adjacent pixels share the same calculation, the resulting a value is
different for each of them: only one has a blending weight a, whereas
for the opposite one a equals zero (pixels (1,2) and (1,1) in Figure 1.2,
respectively). The one exception to this is the case in which the pixel lies
at the middle of a line of odd length (as pixel (2, 1) in Figure 1.2); in this
case both the actual pixel and its opposite have a non-zero value for a. As
a consequence, the output of this pass is a texture which, for each pixel,
stores the areas at each side of its corresponding edgels (by the areas at each
side we refer to those of the actual pixel and its opposite). This yields two
values for north edgels and two values for west edgels in the final blending
weights texture. Finally, the weights stored in this texture will be used in
the third pass to perform the final blending. Listing 1.2 shows the source
code of this pass, while Figure 1.1, center right, is the resulting image.

1.3.1 Searching for Distances

The search for distances to the ends of the line is performed using an it-
erative algorithm, which in each iteration checks whether the end of the
line has been reached. To accelerate this search, we leverage the fact that
the information stored in the edges texture is binary –as it simply encodes
whether an edgel exists–, and query at positions between pixels using bi-
linear filtering for fetching two pixels at a time (see Figure 1.3). The result
of the query can be: a) 0.0, which means that neither pixel contains an
edgel, b) 1.0, which implies an edgel exists in both pixels, or c) 0.5, which
is returned when just one of the two pixels contains an edgel. We there-
fore stop the search if the returned value is lower than one2. By using a
simple approach like this, we are introducing two sources of inaccuracy:
a) we do not stop the search when encountering an edgel perpendicular to
the line we are following but when the line comes to an end instead; and
b) when the returned value is 0.5 we cannot distinguish which of the two
pixels contains an edgel. While these introduce an error in some cases, it
is unnoticeable in practice and the speed-up is considerable, as this allows
us to jump two pixels per iteration. Listing 1.3 shows one of the distance
search functions.

In order to make the algorithm practical in a game environment, we
limit the search to a certain distance. As expected, the greater the maxi-
mum length, the better the quality of the anti-aliasing. However, we have

2In practice we use 0.9 due to bilinear filtering precision issues.

i
i

i
i

i
i

i
i

8 1. Practical Morphological Anti-Aliasing

f loat4 BlendingWeightCalculationPS (
f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat4 weights = 0 . 0 ;

f loat2 e = edgesTex .SampleLevel (PointSampler ,
texcoord , 0) . rg ;

[branch]
i f (e . g) { // Edge at north

f loat2 d = f loat2 (SearchXLeft (texcoord) ,
SearchXRight (texcoord)) ;

// Ins tead o f sampling between edge l s , we sample at −0.25 ,
// to be ab l e to d i scern what va lue each edge l has .
f loat4 coords = mad(f loat4 (d . x , −0.25 , d . y + 1 . 0 , −0.25) ,

PIXEL SIZE . xyxy , texcoord . xyxy) ;
f loat e1 = edgesTex .SampleLevel (LinearSampler ,

coords . xy , 0) . r ;
f loat e2 = edgesTex .SampleLevel (LinearSampler ,

coords . zw , 0) . r ;
we ights . rg = Area (abs (d) , e1 , e2) ;

}

[branch]
i f (e . r) { // Edge at west

f loat2 d = f loat2 (SearchYUp (texcoord) ,
SearchYDown (texcoord)) ;

f loat4 coords = mad(f loat4 (−0.25 , d . x , −0.25 , d . y + 1 . 0) ,
PIXEL SIZE . xyxy , texcoord . xyxy) ;

f loat e1 = edgesTex .SampleLevel (LinearSampler ,
coords . xy , 0) . g ;

f loat e2 = edgesTex .SampleLevel (LinearSampler ,
coords . zw , 0) . g ;

weights . ba = Area (abs (d) , e1 , e2) ;
}

return weights ;
}

Listing 1.2. Blending Weights Calculation Shader.

found that, for the majority of cases, distance values between 8 and 12
pixels give a good trade-off between quality and performance.

In the particular case of the Xbox 360 implementation we make use of
the tfetch2D assembler instruction, which allows to specify an offset in
pixel units with respect to the original texture coordinates of the query.
This instruction is limited to offsets of −8 and 7.5, which constrains the
maximum distance that can be searched. When searching for distances

i
i

i
i

i
i

i
i

1.3. Obtaining Blending Weights 9

f loat SearchXLeft (f loat2 texcoord) {
texcoord −= f loat2 (1 . 5 , 0 . 0) * PIXEL SIZE ;
f loat e = 0 . 0 ;
// We o f f s e t by 0.5 to sample between edge l s , thus f e t c h i n g
// two in a row .
for (int i = 0 ; i < maxSearchSteps ; i++) {

e = edgesTex .SampleLevel (LinearSampler , texcoord , 0) . g ;
// We compare with 0.9 to prevent b i l i n e a r access p r e c i s i on
// problems .
[f l a t t e n] i f (e < 0 . 9) break ;
t excoord −= f loat2 (2 . 0 , 0 . 0) * PIXEL SIZE ;

}
// When we e x i t the loop wi thout f i nd in g the end , we return
// −2 * maxSearchSteps .
return max(−2.0 * i − 2 .0 * e , −2.0 * maxSearchSteps) ;

}

Listing 1.3. Distance Search Function (search in the left direction case).

Figure 1.3. Hardware bilinear filtering is used when searching for distances from
each pixel to the end of the line. The color of the dot at the center of each pixel
represents the value of that pixel in the edges texture. In the case shown here,
distance search of the left end of the line is performed for the pixel marked with
a star. Positions where the edges texture is accessed, fetching pairs of pixels, are
marked with rhombuses. This allows us to travel double the distance with the
same number of accesses.

greater than eight pixels we cannot use the hardware so efficiently and the
performance is thus affected negatively.

1.3.2 Fetching Crossing Edges

Once the distances to the ends of the line are calculated they are used to
obtain the crossing edges. A naive approach for fetching the crossing edge
of an end of line would imply querying two edgels. Instead, a more efficient
approach is to use bilinear filtering for fetching both edgels at a time, in
a similar way to how the distance search is done. However, in this case
we must be able to distinguish the actual value of each edgel, so we query
with an offset of 0.25, allowing us to distinguish which edgel is equal to
1.0 when only one of the edgels is present. Figure 1.4 shows the crossing

i
i

i
i

i
i

i
i

10 1. Practical Morphological Anti-Aliasing

0.0 0.25 0.75 1.0

Figure 1.4. Examples of the four possible types of crossing edge and correspond-
ing value returned by the bilinear query of the edges texture. The color of the dot
at the center of each pixel represents the value of that pixel in the edges texture.
The rhombuses, at a distance of 0.25 from the center of the pixel, indicate the
sampling position, while their color represents the value returned by the bilinear
access.

#define NUM DISTANCES 9
#define AREA SIZE (NUM DISTANCES * 5)

f loat2 Area (f loat2 di s tance , f loat e1 , f loat e2) {
// * By d i v i d i n g by AREA SIZE − 1.0 below we are
// im p l i c i t e l y o f f s e t t i n g to always f a l l i n s i d e a p i x e l .
// * Rounding preven t s b i l i n e a r access p r e c i s i on problems .

f loat2 pixcoord = NUM DISTANCES *

round (4 . 0 * f loat2 (e1 , e2)) + d i s t ance ;
f loat2 texcoord = pixcoord / (AREA SIZE − 1 . 0) ;
return areaTex .SampleLevel (PointSampler , texcoord , 0) . rg ;

}

Listing 1.4. Precomputed Area Texture Access Function.

edge corresponding to each of the different values returned by the bilinear
query.

1.3.3 The Precomputed Area Texture

With distance and crossing edges information at hand, we now have all the
required inputs to calculate the area corresponding to the current pixel. As
this is an expensive operation, we opt to precompute it in a 4D table which
is stored in a conventional 2D texture3 (see Figure 1.2). This texture is
divided in subtextures of size 9×9, each of them corresponding to a pattern
type (codified by the fetched crossing edges e1 and e2 at each end of the
line). Inside each of these subtextures, (u, v) coordinates correspond to
distances to the ends of the line, 8 being the maximum distance reachable.
Resolution can be increased if a higher maximum distance is required. See
Listing 1.4 for details on how the precomputed area texture is accessed.

3The code to generate this texture is available in the web material.

i
i

i
i

i
i

i
i

1.4. Blending with the 4-neighborhood 11

To query the texture, we first convert the bilinear filtered values e1 and
e2 to an integer value in the range 0..4. Value 2 (which would correspond
to value 0.5 for e1 or e2) cannot occur in practice, which is why the cor-
responding row and column in the texture are empty. Maintaining those
empty spaces in the texture allows for a simpler and faster indexing. The
round instruction is used to avoid possible precision problems caused by
the bilinear filtering.

Following the same reasoning –explained at the beginning of the section–
for which we store area values for two adjacent pixels in the same pixel of
the final blending weights texture, the precomputed area texture needs to
be built on a per-edgel basis. Thus, each pixel of the texture stores two a
values, for a pixel and its opposite (again, a will be zero for one of them in
all cases but those of pixels at the center of lines of odd length).

1.4 Blending with the 4-neighborhood

In this last pass, the final color of each pixel is obtained by blending the
actual color with its four neighbors according to the area values stored
in the weights texture obtained in the previous pass. This is achieved by
accessing three positions of the blending weights texture: a) the current
pixel, which gives us the north and west blending weights; b) the pixel at
the south; and c) the pixel at the east. Once more, to exploit hardware
capabilities, we use four bilinear filtered accesses to blend the current pixel
with each of its four neighbors. Finally, as one pixel can belong to four
different lines, we perform an averaging between the contributing lines.
Listing 1.5 shows the source code of this pass, while Figure 1.1, right,
shows the resulting image.

1.5 Results

Quality-wise, our algorithm lies between 4x and 8x MSAA, while only
requiring a memory consumption of 1.5x the size of the backbuffer on PC
and of 2x on Xbox 3604. Figure 1.5 shows a comparison between our
algorithm, 8x MSAA and no anti-aliasing at all on images from Unigine
Heaven Benchmark. A limitation of our algorithm with respect to MSAA
is the impossibility of recovering subpixel features. More results of our
technique on images from Fable® III are shown in Figures 1.6 and 1.7.
Results of our algorithm in-game are available in the web material.

4The increased memory cost in the Xbox 360 is due to the fact that two-channel
render targets with 8-bit precision cannot be created in the framework we used for that
platform, forcing the usage of a four-channel render target for storing the edges texture.

i
i

i
i

i
i

i
i

12 1. Practical Morphological Anti-Aliasing

f loat4 NeighborhoodBlendingPS (
f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat4 topLe f t = blendTex .SampleLevel (PointSampler ,
texcoord , 0) ;

f loat r i g h t = blendTex .SampleLevel (PointSampler ,
texcoord , 0 ,
i n t2 (0 , 1)) . g ;

f loat bottom = blendTex .SampleLevel (PointSampler ,
texcoord , 0 ,
i n t2 (1 , 0)) . a ;

f loat4 a = f loat4 (topLe f t . r , r i ght , topLe f t . b , bottom) ;

f loat sum = dot (a , 1 . 0) ;

[branch]
i f (sum > 0 . 0) {

f loat4 o = a * PIXEL SIZE . yyxx ;
f loat4 c o l o r = 0 . 0 ;
c o l o r = mad(colorTex .SampleLevel (LinearSampler ,

texcoord + f loat2 (0 . 0 , −o . r) , 0) , a . r , c o l o r) ;
c o l o r = mad(colorTex .SampleLevel (LinearSampler ,

texcoord + f loat2 (0 . 0 , o . g) , 0) , a . g , c o l o r) ;
c o l o r = mad(colorTex .SampleLevel (LinearSampler ,

texcoord + f loat2 (−o . b , 0 . 0) , 0) , a . b , c o l o r) ;
c o l o r = mad(colorTex .SampleLevel (LinearSampler ,

texcoord + f loat2 (o . a , 0 . 0) , 0) , a . a , c o l o r) ;
return c o l o r / sum ;

} else {
return colorTex .SampleLevel (LinearSampler , texcoord , 0) ;

}
}

Listing 1.5. 4-neighborhood Blending Shader.

As our algorithm works as a post-process, we have run it on a batch
of screenshots of several commercial games, in order to gain insight about
its performance in different scenarios. Given the dependency of the edge
detection on image content, processing times are variable. We have noticed
that each game has a more or less unique look-and-feel, so we have taken
a representative sample of five screenshots per game. Screenshots were
taken at 1280 × 720, which we take as the typical case in the current
generation of games. We used the slightly more expensive luminance-based
edge detection, since we did not have access to depth information. Table
1.1 shows the average time and standard deviation of our algorithm on
different games and platforms (Xbox 360/DirectX 9 and PC/DirectX 10),
as well as the speed-up factor with respect to MSAA. On average, our
method implies a speed-up factor of 11.80x with respect to 8x MSAA.

i
i

i
i

i
i

i
i

1.6. Discussion 13

Xbox 360 GeForce 9800 GTX+
Avg. Std. Dev. Avg. Std. Dev. Speed-up

Assasin’s Creed 4.37 ms 0.61 ms 0.55 ms 0.13 ms 6.31x?

Bioshock 3.44 ms 0.09 ms 0.37 ms 0.00 ms n/a
Crysis 3.92 ms 0.10 ms 0.44 ms 0.02 ms 14.80x

Dead Space 3.65 ms 0.45 ms 0.39 ms 0.03 ms n/a
Devil May Cry 4 3.46 ms 0.34 ms 0.39 ms 0.04 ms 5.75x

GTA IV 4.11 ms 0.23 ms 0.47 ms 0.04 ms n/a
Modern Warfare 2 4.38 ms 0.80 ms 0.57 ms 0.17 ms 2.48x?

NFS Shift 3.54 ms 0.35 ms 0.42 ms 0.04 ms 14.84x
Split/Second 3.85 ms 0.27 ms 0.46 ms 0.05 ms n/a

S.T.A.L.K.E.R. 3.18 ms 0.05 ms 0.36 ms 0.01 ms n/a
Grand Average 3.79 ms 0.33 ms 0.44 ms 0.05 ms 11.80x

Table 1.1. Average times and standard deviations for a set of well-known com-
mercial games. A column showing the speed-up factor of our algorithm with
respect to 8x MSAA is also included for the PC/DirectX 10 implementation.
Values marked with ? indicate 4x MSAA, since 8x was not available, and the
grand average of these includes only values for 8x MSAA.

1.6 Discussion

This section includes a brief compilation of possible alternatives that we
tried, in the hope that it be useful for programmers dealing with this algo-
rithm in the future.

Edges Texture Compression. This is perhaps the most obvious pos-
sible optimization, allowing to save memory consumption and bandwidth.
We tried two different alternatives: a) using one bit per edgel, and b) sep-
arating the algorithm into a vertical and a horizontal pass and storing the
edgels of four consecutive pixels in the RGBA channels of each pixel of
the edges texture (vertical and horizontal edgels separately). This has two
advantages: first, the texture takes up less memory; second, the number
of texture accesses is lower, as several edgels are fetched in each query.
However, storing the values and –to a greater extent– querying them later,
becomes much more complex and time-consuming, given that bitwise oper-
ations are not available in all platforms. Nevertheless, the usage of bitwise
operations in conjunction with edges texture compression could further
optimize our technique in platforms where they are available, like DirectX
10.

Storing crossing edges in the edges texture. Instead of storing just
the north and west edgels of the actual pixel, we tried storing the crossing
edges situated at the left and at the top of the pixel. The main reason
for doing this was that we could spare one texture access when detecting

i
i

i
i

i
i

i
i

14 1. Practical Morphological Anti-Aliasing

patterns, but we realized that using bilinear filtering we could also spare
the access, without requiring to store those additional edgels. The other
reason for storing them was that by doing so, when searching for distances
to the ends of the line, we could stop the search when we encountered a
line perpendicular to the one we were following, which is an inaccuracy of
our approach. However, the current solution yields similar results, requires
less memory and processing time is lower.

Two-pass implementation. As mentioned in Section 1.1, a two-pass
implementation is also possible, joining the last two passes into a single one.
However, this would be more inefficient, due to repetition of calculations.

Storing distances instead of areas. Our first implementation calcu-
lated and stored only distances to the ends of the line in the second pass,
and they were then used in the final pass to calculate the corresponding
blending weights. However, directly storing areas in the intermediate pass
allows us to spare calculations, reducing execution time.

1.7 Conclusion

In this chapter, we have presented an algorithm crafted for the computation
of anti-aliasing. Our method is based on three passes that detect edges, de-
termine the position of each pixel inside those image features and produce
an anti-aliased result that selectively blends the pixel with its neighbour-
hood according to its relative position within the line it belongs to. We
also take advantage of hardware texture filtering, which allows to reduce
the number of texture fetches by half.

Our technique features execution times which make it usable in actual
game environments, and which are far below the ones needed for MSAA.
The method presented has a minimal impact on existing rendering pipelines
and is entirely implemented as an image post-process. Resulting images
are between 4x and 8x MSAA in quality, while requiring a fraction of their
time and memory consumption. Furthermore, it can anti-alias transparent
textures such as the ones used in alpha testing for rendering vegetation,
whereas MSAA can only smooth vegetation when using alpha to coverage.
Finally, when using luminances to detect edges, it can also handle aliasing
belonging to shading and specular highlights.

The method we are presenting solves most of the drawbacks of MSAA,
which is the current most extended solution to the problem of aliasing, and
its processing time is one order of magnitude below that of 8x MSAA. We
believe that the quality of the images produced by our algorithm, its speed,

i
i

i
i

i
i

i
i

1.8. Acknowledgements 15

efficiency and pluggability, make it a good choice for rendering high quality
images in today game architectures, including platforms where benefiting
from anti-aliasing together with outstanding techniques like deferred shad-
ing was difficult to achieve. In summary, we present an algorithm which
challenges the current gold standard for solving the aliasing problem in real
time.

1.8 Acknowledgements

Jorge would like to dedicate this work to his eternal and most loyal friend
Kazán. The authors would like to thank the colleagues at the lab for their
valuable comments, and Christopher Oat and Wolfgang Engel for their
editing efforts and help in obtaining images. Thanks also to Lionhead Stu-
dios and Microsoft Games Studios for granting permission to use images
from Fable® III. We are very grateful for the support and useful sugges-
tions provided by the Fable team during the production of this work. We
would also like to express our gratitude to Unigine Corporation, and Denis
Shergin in particular, for providing us with images and material for the
video (available in the web material) from their Unigine Heaven Bench-
mark. This research has been funded by a Marie Curie grant from the
7th Framework Programme (grant agreement no.: 251415), the Spanish
Ministry of Science and Technology (TIN2010-21543) and the Gobierno de
Aragón (projects OTRI 2009/0411 and CTPP05/09). Jorge Jimenez and
Belen Masia are also funded by grants from the Gobierno de Aragón.

Bibliography

[Koonce 07] Rusty Koonce. “Deferred Shading in Tabula Rasa.” In GPU
Gems 3, pp. 429–457. Addison Wesley, 2007.

[Reshetov 09] Alexander Reshetov. “Morphological Antialiasing.” Proceed-
ings of High Performance Graphics, pp. 109–116.

[Shishkovtsov 05] Oles Shishkovtsov. “Deferred Shading in
S.T.A.L.K.E.R.” In GPU Gems 2, pp. 143–166. Addison Wes-
ley, 2005.

[Sousa 07] Tiago Sousa. “Vegetation Procedural Animation and Shading
in Crysis.” In GPU Gems 3, pp. 373–385. Addison Wesley, 2007.

[Thibieroz 09] Nicolas Thibieroz. “Deferred Shading with Multisampling
Anti-Aliasing in DirectX 10.” In ShaderX7, pp. 225–242. Charles River
Media, 2009.

i
i

i
i

i
i

i
i

16 BIBLIOGRAPHY

Without anti-aliasing With our algorithm With 8x MSAA

Figure 1.5. Examples of images without anti-aliasing, processed with our algo-
rithm and with 8x MSAA. Our algorithm offers similar results to 8x MSAA. A
special case is the handling of alpha textures (bottom row). Note that in the grass
shown here, alpha to coverage is used when MSAA is activated, which provides
additional detail, hence the different look. As the scene is animated, there might
be slight changes in appearance from one image to another. Images from Unigine
Heaven Benchmark courtesy of Unigine Corporation.

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 17

Figure 1.6. Images obtained with our algorithm. Insets show close-ups with no
anti-aliasing at all (left) and processed with our technique (right). Images from
Fable® III courtesy of Lionhead Studios.

i
i

i
i

i
i

i
i

18 BIBLIOGRAPHY

Figure 1.7. More images showing our technique in action. Insets show close-
ups with no anti-aliasing at all (left) and processed with our technique (right).
Images from Fable® III courtesy of Lionhead Studios.

