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Abstract

Commonly used direct rendering techniques simulate ligitsport for a complete scene, specified in terms of
light sources, geometry, materials, participating meeia, On the other hand, inverse rendering problems take as
input a desired light distribution and try to find the unknoparts of the scene needed to get such light field. The
latter kind, where inverse reflector design is includedraslitionally solved by simulation optimization methods,
due to the high complexity of the inverse problem. In thisgpape present an inverse reflector design method
which handles surfaces #URBS and simulates accurately the light transport by means of difieal photon
mappingalgorithm. The proposed method is based on an optimizatiethadl, calledoattern searchin order to
compute the reflector needed to generate a target near light fSome assumptions are determined in order to
reduce the complexity of the problem, such as a rotatiorsgltymetric reflector or its perfectly specular reflective
behavior. The optimization method specifies the reflectapstby handling a NURBS curve as a generatrix,
sequentially modifying the position and weights of its saoints in order to obtain the reflector solution. Areas
of applications of inverse reflector design span from agsttitiral lighting design to car headlamps design.

Categories and Subject Descriptdescording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction by Patow and Pueyd”P03 (see Tablel). Our work falls

in the subgroup of inverse geometry problems, where the
unknown G in (1) is the shape of a reflector surface of an
optical set (a luminaire), modeled as a rotationally symmet
ric surface by handling a NURBS curve generatrix. Inverse
geometry problems and methods have a high importance in
industrial lighting design (car headlights, street langpshi-
tectural indoor lighting design, etc.).

Inverse rendering problems differ from traditional diresm-
dering techniques in the direction of the data flow during the
computation process. While direct techniques compute the
light transport from a completely specified three dimenaion
scene, the inverse process starts with a desired lighttalistr
tion and tries to find the unknown information of the ren-
dering equation such as geometry, materials, light sources
etc.

The rendering equatiorKpj86] can be rewritten in its
compact form Arv95] [Mar9g as follows Table 1: Classification of Inverse Rendering problems (af-

ter Patow and PueydqP03). Question marks stand for un-
known information, check marks stand for known informa-

L=Le+KGL (1) tion. Asterisk superscript stands for partially known info
mation.
whereLe stands for the initial light introduced in the sys- _ i L Le K G
tem (emitted light)K is an operator that describes how sur- Direct rendering 2 v vV
faces reflect light (materials§ indicates how light travels Inverse lighting .2 vV
among surfaces (geometry) ahds the light reflected from Inverse reflectometry ‘/* o7/
surfaces. According to the type of unknown information in Inverse combined problems v* 2 ? v
(1), a classification of inverse rendering problems was given Inverse geometry v v v 7
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Additionally, the nature of the solving algorithm applied tationally symmetric reflectors. Numerical approaches; ge
to retrieve the unknown information leads to another tax- erally make use of spline-based surfaces and polygons to
onomy [LJPPO§. On one hand, direct-solving approaches model the desired reflector together with an optimization
avoid to solve the rendering equation by building the in- method to find the shape. In this sense, Neubaheu94
verse problem as a system of equations. On the other hand,found a B-spline reflector by applying a Powell optimization
indirect-solving algorithms are based in optimizationimet ~ method. Other authors used Genetic Algorithms to overcome
ods, which require evaluating the traditional direct reirg the problem of minimizing the nonlinear problem in inverse
problem at each iteration. This paper takes the latteregfyat ~ surface design, such as Doyle et &JC99 and Choi et
in order to perform the inverse reflector design by means of al. [CKP*07]. Doyle et al. PCC99 performed a computer
a pattern search optimization algorithm. simulation, consisting of a 2D optical reflector modeled us-
ing a Bezier curve with a point light source. They compute
light distributions in the near, middle and far fields using a
ray-tracing approach, automating the design processghrou
the use of a differential evolutionary strategy. Simila@oi
et al. [CKP*07] introduce a design method of dome pendant
f prismatic luminaires by means of a micro genetic algorithm.

Finally, Patow et al. PPV04 proposed a technique for the

design of reflector surfaces from a desired far field radiance

The remainder of this paper is organized as follows: Sec- distribution and geometrical constraints imposed by itrgus
tion 2 presents previous work on the inverse rendering and needs. They proposed a regular grid structure for the repre-
inverse geometry fields. Secti@rputs forward a theoretical sentation of the reflector surface and Monte Carlo light-trac
background on optimization. In Sectidrthe inverse design ing for the computation of radiance transport.
method is developed. The paper ends with the results in Sec-
tion 5 and conclusions and future work in Sectidhand?7.

This paper presents as main contributions an inverse re-
flector design method, by means of handling the represen-
tation of a rotationally symmetric reflector with a NURBS
curve generatrixPT97, simulating the light transport with
a modified photon mapping techniquieh0] and optimiz-
ing the design process with the pattern search algorithm o
Hooke and Jeeves$ip6].

In this paper we propose a method for inverse designing
rotationally symmetric reflectors given a desired near field
2. Related Work irradiance distribution. Our proposed method differs from

. . . . revious work in the following ways:
Solving an inverse rendering problem is a task that usually P gway

either relies on a theoretical approach or tries to apply-a nu

merical solution LJPPO6.
e The representation of the rotationally symmetric reflec-

Ramamoorthi and Hanrahan introduced iRHOI a tor is based on a NURBS curve generatrix. We choose
signal-processing framework which describes the reflected  this representation due to two reasons. First, the use of
light field as a convolution of the lighting and the Bidirec- this approach, instead of a polygon mesh (as in Patow et
tional Reflectance Distribution Function (BRDF), and ex- al. [PPV04), drastically reduces the dimension of the op-
presses it mathematically as a product of spherical hanoni  timization problem. Second, NURBS curves are widely
coefficients of the BRDF and the lighting. By viewing in- used in CAD applications and industrial design. The

verse rendering as a deconvolution, the authors showed why  ;se of NURBS, instead of B-splines (such as Neubauer
inverse rendering problems are ill-conditioned when soft [Neu94), also gives more flexibility designing shapes due

shading features are present; which was previously obs$erve g the extra parameter to handle the weight of each control
by Marschner and Greenbefd97]. While in Ramamoor- point.

thi and Hanrahan’s workHHO1] lighting is assumed to
come from infinity and occlusion is ignored, Durand et al.
[DHS*05] overcome these limitation, considering complex
blockers and light transport by taking into account angu-
lar and spatial variation. Recently, Ramamoorthi and Han-
rahan RHO1] developed a full gradient analysis of the basic
shading steps, showing the relationship between spatidl, a
angular effects.

e We use traditional photon mappindegn0] in order to
solve the rendering equation, thus accurately simulating
inter-reflections and caustics generated by the reflector.
We introduce a modification in the photon storing proce-
dure, just storing the particles which interact with themea
field of study, allowing to store more photons for a more
accurate irradiance estimate. As opposed to the work of
Doyle et al. DCC99, we perform a 3D physically-based
Early works on inverse geometry had restrictive assump- ~ global illumination simulation.

tions on ray reflections, such as the one by Wescott and ¢ We use the pattern search algorithm from Hooke and

Norris [WN75]. More recent works by Wang/§an9q and JeevestfiJ6] in order to find the optimal reflector shape.
Oliker [OIi08] overcome this limitation. While the work by This kind of direct searches tries to guess patterns of ever-
Wang introduced the design of reflectors assuming distant  improving solutions in order to reduce the number of ex-
sources (a far field problem) and differential geometry for-  pensive evaluations of the objective function.

mulation, Oliker presented a near field formulation with ro-
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3. Optimization

Inverse rendering, and hence inverse reflector design, can
be seen as a type of mathematical problem, usually called

optimization. Optimization can be defined as the process of
finding the conditions that give the maximum or minimum
value of a function. Therefore, an optimization problem can
be stated as follows

min f(9),

with Q C R"
2eQ

@)

where 9 = (81,...,9n) is a n-dimensional vector irR",
called thedecision variablef : R" — R is termed thebjec-
tive functionandQ is theconstraint sebr feasible regionlf
Q = R" the optimization problem isnconstrainedwhereas
Q c R" makes the probleroonstrainedo the regiorQ.

A vectord™ is alocal minimumif it is not worse than its
neighbors; that is, there is @an> 0 such that

f(9*) < (), V9eQ with|9—9*|<e (3)

with || - || being the Euclideatp-norm. On the other hand, a
global minimunis a vecto®* such that

f(8™) < f(9), V9 €Q 4)
The local or global minimum is said to kstrict if the in-
equalities in 8) and @) are also strict for alf # 9*.

In order to minimizef and obtain a local or global min-
imum, optimization methods have to be used. Generally,
an optimization method is an iterative process, which start
with an initial decision variabl@® (or an initial set of deci-

sion variables) and generates a sequence of ever-improving

solutionsg?, .. .,19", by means of a given iterative rule. The

iterative process stops when a convergence rule is satisfied
In the best case, this sequence converges towards the global

minimum §* of f. In the worst case, the method can get
trapped in a local minimum, having to be restarted in order
to try to scape from it.

Depending on the nature of the objective functibuif-
ferent optimization methods can be appliedf i continu-

function values and do not require the use of explicit or ap-
proximate derivatives. TorczoT¢r97] introduced the gen-
eral class of pattern search methods for unconstrained op-
timization, demonstrating that the class of methods unified
various distinct direct search techniques, such as thé orig
nal pattern search of Hooke and Jeew¢3d1], the Powell’s
method Pow64, the Rosenbrock’s methodRps6(Q or the
Simplex method IM65].

4. The Inverse Design Method

Having so far established the definition of the optimization
problem in Sectior8, we can now reformulate it in terms
of our inverse reflector design problem. Therefore, it can be
stated as the minimization of an error metric (the objective
function) between the irradiance distribution generated i
near field by a given reflector (the decision variable) and a
desired near field irradiance distribution. In order to eaté

the actual irradiance distribution in the near field, andsthu
compute the value of the error metric, a modified global illu-
mination light transport technique, called photon mapping
is used. A pattern search optimization algorithm is used in
order to find the optimal reflector that minimizes de error
metric.

4.1. The Decision Variable: NURBS Representation

NURBS have become the standard for curve and surface de-
scription in industry. We chose this representation for the
reflector shape due to the fact that provide a unified math-
ematical basis for representing both analytic shapes ¢coni
sections, quadric surfaces, etc.), as well as free-foritiesnt
such as reflector antennas, car bodies, ship hulls or dircraf
fuselagesiPT97. On the other hand, NURBS also allows to
specify and vary easily its continuity degree in order to inee
the wide range of needs in the industrial design.

A pth-degree NURBS curve is defined by

Yo Nip(uwik

C(u) = b
) YitoNip(u)wi asus

®)

where B, are thecontrol points w; are theweightsand
Nip(u) are thepth-degree B-spline basis function defined
on the non-periodic and non-uniform knot vedtbfPT97.

We use a NURBS curv@ to define a generatrix profile of
a rotationally symmetric reflectd®. In this way our method

ous and differentiable, gradient based methods can be used.can define the shape of the reflector by moving the con-

Classical algorithms of this type include the steepestetgsc
method, the conjugate gradient method and the Newton’s
method BY0€]. But when the derivatives of the objective
functions are unavailable, as in inverse reflector design, d
rect search methods fit as a good optiBad9§.

Pattern search is a subclass of these direct search algo-

rithms, which involve the direct comparison of objective

(© The Eurographics Association 2008.

trol pointsP, and varying its weightsy;. Less control points
defining the curve will represent a global shape for the re-
flector, whilst more control points will allow to make local
modifications and introduce fine surface features. Due to the
nature of the generatrix, control points are specified in 2D
coordinates such th& = (i, vi).

The optimization method specified in SectiéBgoverns
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the shape of the reflector by means of the decision variable
9 described in Z), and not directly handling the NURBS
curve. Therefore, this decision variable is now stated as th
sequence of control points and weights as follows

.SE(XO7yO7WO7""Xi7yi7Wi7""Xn7yn7Wn) (6)

therefore obtaining a decision variatlein R3™1. Using
a NURBS curve with three control points (e.g. enough to
define a conic section), the dimension of the optimization
problem would be nine, whereas using directly a polygon
mesh would make necessary a higher quantity of vertices.

The choice of a NURBS curve then reduces the dimension
of the optimization problem, while gives more flexibility to
the design of the surface.

4.2. The Near Field: Irradiance samples

The near field is that part of the space nearest to the reflector
Beyond the near field is the infinite far field. Therefore, whil
far field distributions, which assume a distant light source
are usually represented just in terms of angular variatfon,

yN 1 (Ei(R) — Ei(R))?
N

f(R) = RMSHR) _\/ (7

whereE;(R") stands for the desired irradiance at the point
pi in the near field andN is the total number of points in
the desired near field. The RMSE metric gives an idea of the
mean deviation of the irradiance samples in the near field in
irradiance units\/ /n?).

4.4. The Simulation: Photon Mapping

In order to compute the irradiance distribution arrivingte
near field, we use the traditional photon mapping algorithm
[Jen01 with a modification on the storing process of pho-
tons. The photon mapping algorithm is a two-pass method.
First, photons are traced from light through the scene; stor
ing each interaction in a speciklnearest neighbok-NN)
structure totally decoupled from the geometry, calgub-

ton map Second, irradiance estimates are performed using
density estimation techniques on the photon map.

Using photon mapping has the advantage that the error in

near field representations adds spatial variation. We chose the estimation of the irradiance is of low frequency (bias)

near field representation due to its real application: aptic

rather than the high frequency noise (variance) in Monte

sets (generally a light source plus a reflector surface) are Carlo ray tracing. Other advantages of using photon map-
usually built in or hanged from ceilings or placed on pole- Ping include using arbitrary complex geometry and BRDFs
shaped supports, and generates a given light field on the floor for the reflector surface. The photon mapping algorithm also
and the surrounding area. Therefore, we can see the nearmMakes possible the accurate computation of caustic effects

field in our framework as the zone near the luminaire (floor,
walls, road, etc.) where we want a desired light distributio

We formally define the near field(R) as a set of points
pi uniformly distributed on a given surfac At each point
pi, the incoming irradiancg; (R) due to the presence of the
reflectorR can be computed by means of the global illumi-
nation algorithm described in Sectidm.

Therefore, in our framework, the near field can be either
specified as a real 3D object with material properties, &ffec
ing to the inverse computation of the reflector, or it can be
set as an invisible object, just registering the light thedsp
through. This aspect is important in our framework, because
it allows to introduce a model of the environment where the
luminaire is going to be finally placed, and thus optimize
even more its behavior.

4.3. The Objective Function: RMS Error

To measure the fitness of the computed reflector an objective
function has to be chosen. The objective function that we
have used is the Root Mean Squared Error (RMSE) between
the near field= (R) generated by a reflect®and the desired
irradiances in a near fielel(R"). Therefore, the RMSE met-

ric is expressed as follows

due to the reflection of light in specular surfaces, sucheas th
case of a reflector surface. Finally, this rendering alparit
allows to simulate inter-reflections in the bounding volume
of the reflector surface. In this manner, the photon mapping
offers to our framework a full global solution of the light
distribution generated by the presence of a reflector.

The outline of the behavior of the photon algorithm in our
framework is as follows:

e Stage 1: Photon Tracing

— Photons are emitted from a diffuse point light of power
®. Each photon carries a part of that power. Again, ar-
bitrary complex light sources could be used using spe-
cific sampling techniques. In scenes with sparse geom-
etry, such as the one treated in this paper, many pho-
tons do not hit any object. In order to reduce this waste
of time, we use projection map393. In that way, all

the emitted photons are directed towards the reflector
surface.

Photons are traced through the scene in the same way
as ray tracing. When a photon interacts with a surface,
it can be either absorbed, reflected or transmitted. This
is done statistically, based on the material properties
of the reflector by means of the Russian Roulette tech-
niqgue BES94.

(© The Eurographics Association 2008.
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— The original algorithm stores the photons in the photon Davidon [Dav91]], which incorporates g@attern stepin or-
map structure whenever an interaction happens. In our der to accelerate the search process from previous suaktessf
method, only photons interacting with the near field movements, in an opportunistic way.
are important. Therefore, as a modification of the orig-
inal photon mapping algorithm, we only store photons
that hit or go through the near field studied, after in-
teracting with the reflector. In that sense we can store
more photons in the photon map in order to compute
more accurate irradiance estimates in the near field.

The Hooke-Jeeves starts with an initial guess decision
variable 9° and a real valued step siz&, and itera-
tively found ever-improving solutions by sequencing an ex-
ploratory stepPav9]] and a pattern step.

4.5.1. Exploratory step: Coordinate Search

Stage 2: Irradiance Estimate .
° 9 The coordinate search step performs exploratory moves

— To compute the irradiances values along the near field, around a base poirﬁk, finding new trial points by using a
the algorithm perform a irradiance estimate at each realvalued stef, getting at the end a new poi&'f*l. Given
point p; on the near field. An irradiance estimate is a trial point{)k+l = (91,...,9i,...,9n) two exploratory

a density estimate, such that moves are defined for each coordinafeom 1 ton
1 N
Ei=— > K(lpi—phjl)®; ®)

w? j; 9 = (91,....9i +4,...,9n) 9)
whereK is akernelused to weight the flux contribu- 9 =(91,....9i —A,....9n) (10)
tions ®; from each photon based on their distance to
the pointp;. N is the number of photons used to com- The coordinate search starts the process by performing the
pute the estimate and is also called mdwidthand ~ exploratory moves of*** = 8; first 92, and therd!*1,
r is the radius of the bounding sphere includind khe on coordinate = 1. The first successful move update the
photons of the estimate. new trial point9* L. So, if f (9K 1) < f(9%*1) theno* ! =
Increasing the bandwidth of the kernel, the variance is 91, whilst if f(9K%1) < f(9*+1) then 9k = 9+1. if

reduced, but the bias is increased in the irradiance es- nqither of them success th&kt? is not updated. After that
timation, blurring highlights and caustics. This artifact iy process is again repeated for coordiriatel, starting
is not desirable in our simulation, due to the intrin-  \yiih the new trial poinﬁkﬂ_ In the best case, and after iter-

sic connection between caustics and the ever-present aiing over all then coordinates, the exploratory step returns a
curvature of the reflector surfacddii92]. In order to point8k+l # 9K which assures tha.t(sk+l) < f(sk)_ In the

cushion this increasing bias we use the Silverman ker- ;4 ¢t case, the poirﬁ"“ is the same as the starting point
nel [SWH"95], which has a better behavior than others gk aftar  trial points were evaluated.
widespread kernelssich03.

4.5.2. Pattern Step

4.5. The Optimization Method: Hooke and Jeeves The main idea of the pattern step is to investigate whether
further progress is possible in the main promising directio
This assumption, let the algorithm advance faster, hofyeful
towards the global minimum, avoiding some extra expensive
evaluations of the objective function.

Recalling @), Direct Searchmethods are optimization algo-
rithms that neither compute or explicitly approximate deri
tives of f in order to minimize it. Pattern search methods are
included in this latter group, and the common behavior is
that they use a pattern of points that is independent of the  Given iterates¥* 1 and9¥, the pattern step performs an
objective functionf. evaluation off atak = 9+ a (9% — 8%~1), with o as an ac-
celeration factor. The trial poirak is temporarily accepted,
even if f(a) > f(8%). The algorithm performs then a co-
ordinate search around the trial po'uﬁ‘t If the coordinate
search succeeds, then the point returned is accepted as the
new iterateS**L. If not, the algorithm compute a new coor-
dinate search arour@if. If the latter fails again, the stepis
reduced for the next iteration.

Torczon introduced inTor97] the general class dPat-
tern Searctoptimization methods, where the method which
we use, developed by Hooke and Jeew¥]], is included.
Torczon introduced generalizations to define important con
cepts common to all pattern search methods, sucbags
tern, exploratory moveand the search method itself. Further-
more, in her work proposes a detailed global convergence
theory [Tor97.

Among all of existing pattern search methods we select 5. Results

the original local search algorithm of Hooke and Jeeves We have tested our framework with a theoretical known so-
[HJI61], due to its simplicity. The Hooke-Jeeves algorithm lution: the light distribution produced by a paraboloid re-
is a variant of theCoordinate Searchfirst described by flector. The paraboloid is the rotationally symmetric scefa
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generated by a half-parabola (a kind of conic section). m ou
test problem we define the half-parabola as follows

Rpar(t) = (2at,a(1—t?)+h)  t>0,a>0,h>0 (11)
wherea stands for the distance between the focus and the
vertex of the parabola arids the distance between the focus
and the desired near field.

Reflector Parabo
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Figure 1: The parabolic reflector. Top: the NURBS curve
generatrix. Bottom: the desired irradiance distribution o
the near field.

The parabola has two main interesting optical features
[BWS8E]. First, rays emitted from its focus are reflected in a
parallel way (e.g. perpendicular to the near field). Second,
a spherical wavefront emitted from the focus, is reflected
as a planar wavefront. Therefore, if we place a diffuse light
source in the focus of the parabola definedli)( we can
express the irradiancE}I arriving to a pointp; in a near field
at a distancén from the focus, and after a reflection in the
surface, as follows

I O]

Ei (12)

YT NS
Ama2(1+ 1P 10y2

where @ is the power of the diffuse light source afjg||

is the distance between the pomtand the focus, projected
into the near field. On the other hand, the irradiaBPethat
directly comes from the light source (without any previous
reflection) is stated as

p_ @

B = m( (13)

We can now add12) and (L3) in order to compute the
total irradiancek; that arrives to the near field due to direct
and indirect illumination.

In our results we performed an inverse design of a
paraboloid reflector witta = 5cm In order to enforce the
near field based design of the reflector we chose a value of
5cmfor the distancdr between the light source and the near
field. Such configuration produce a maximum irradiance of
2W/m2 just in the near field point below the light source.
Figure 1 shows the parabola along with the desired near
field. The selected parabola can be modeled as a NURBS
curve with control point®, = (0,a+h), PL = (a,a+h) and
P, = (2a,h), and weightsvp, w1 andw, with value 1.

In order to run the inverse design, an initial reflector has to
be determined as input to the optimization algorithm. Féegur
2 shows the three initial reflectors selected, named reflector
A, BandC. Figure3 shows three views of the objective func-
tion RMSE, marked with the initial errors of the reflectors
A, B and C, and the global minimum P (the parabolic reflec-
tor). As we stated in Sectiof, all reflectors are designed
and handled by means of a NURBS curve via the decision
variabled. In our tests we define all the reflectors just like
the objective parabola: a NURBS curve with three control
points (and a weight for each one). Therefore the problem
has dimension nine, but we fix seven of them to their final
values, reducing the optimization problem to @ space.
The decision variable is theh = (w1, X2), wherew; is the
weight of the control poinP; andx; is thex coordinate of
the control pointP,. The initial decision variable for reflec-
tor Ais 9% = (1.6,9), for B is 9° = (1.8,7) and forC is
9% = (v/2/2,5) (hemi-spheric reflector).

We performed eight tests with the three latter reflectors
varying two parameters of the Hooke-Jeeves algorithm: the
step sizeA and the acceleration factor. Table2 shows the
optimal reflectors}* obtained for each test. Figudeshows
the sequences of the ever-improving solutions on a contour-
line plot of the RMSE function to optimize.

From these results it can be seen that when the initial re-
flector 8° is in the concave region of the global minimum
9* = (1,10), the algorithm converges towarés$, indepen-
dently of the parametersanda (reflectorA). In other cases,
like the reflectoB, a fine tunning of the initial step siZehas
to be performed, in order to not fall in a local minimum. Ex-
treme cases, like the hemi-spheric reflector C, are not able t
scape from deep local minima due to its surrounding orog-
raphy.

(© The Eurographics Association 2008.



Oscar Anson et al. / NURBS-based Inverse Reflector Design

Reflector A Reflector E Reflector C

T
|
|
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Figure 2: Initial reflectors A, B and C for the tests in Tali?e Top: The NURBS curves of initial reflectors A, B and C (red
lines), compared with the desired parabola (black lineg) #re obtained reflector (dashed green lines). Middle: thediance
distribution generated by these initial reflectors in thenfield. Bottom: the irradiance distribution generated by tobtained
reflectors.

6. Conclusions while our maodification in the photon storing process only
registers the particles that interact with the near fieldirga
memory space and giving more accuracy in the irradiance
estimate. As opposed to other works this is done in three
dimensional spaceD[CC99. The specification of the near
We use a NURBS curve to represent the generatrix of the field is general enough to represent the environment close to
reflector surface. In this sense, we reduce the dimension of the reflector, such as floor, walls, etc.
the optimization problem, overcoming the problem present
in polygon based worksPPV04. Additionally, the use of
NURBS, instead of other Spline approachi&(194, gives
more flexibility to the design process.

We have presented a comprehensive framework for inverse
designing rotationally symmetric reflectors given a dekire
near field of irradiances distribution.

Finally, the strategy chosen to perform the optimiza-
tion of the selected RMSE function as objetive function is
the Hooke-Jeeves algorithritlJ61. This algorithm, based
in exploratory moves and optimistic progression, achieves

For the simulation stage, a modified photon mapping tech- good results if the initial reflector belongs to a moderately
nique is applied. The original algorithndign01] gives a full convex zone of the RMSE function, regardless of the dimen-
global solution to the light interaction with the reflector, sionality of the problem.
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Figure 3: Several views of the RMSE function in the surrounding arg¢aefjlobal minimum given by the parabolic reflector
P, showing the error of the initial reflectors A, B and C. Foetsake of clarity, only the range of values betw8emd 4 of the
RMSE function is shown.

Table 2: Comparative results for several tests performed on inigélectors A, B and C (see Figu®. Starting step sizA has
a value oflcm for coordinate x and 0.5 for weight wi. The acceleration factom has a value ofl. 99 is the decision variable
for the initial reflector,;3* is the optimal reflector computed, RMSE ) is the fitness value of the optimal reflecft, k stands
for the number of iterates in the sequelﬂﬂs. . .,Sk.

Refl. Stepsize Acceleratioh 9% = (wy,x,) 9% = (w1, %) RMSE9*) k iterations time
1] A A a (1.6,9) (1, 9.99668 0.00343334 14 25 1m25s
2| A 27 a (1.6,9) (1,9.99844 0.00404593 10 20 1m55s
3|1 A A2 a (1.6,9) (1.00094 10.0002  0.00405967 23 33 2m08s
4 | A A 2a (1.6,9) (0.99999910.0336 0.00896852 9 19 1m:01s
5| A A a/2 (1.6,9) (1.001259.99147)  0.00437376 12 23 1®32s
6| B A a (1.8,7) (2.283754.8125 0.403432 8 18 1416s
71B 2A a (1.8,7) (1.001259.99687  0.00445291 18 28 2301s
8| cC A a (v2/2,5)  (0.6894295.20508  0.0878155 5 15 16h17s
7. Future Work for the recovery of an unknown BRDF or the resolution of

an inverse lighting problem. Additionally, cases basedwen i
dustrial reflector design have to be tested along with other
academic examples, as the one presented in this paper.

A deeper observation has to be performed in the connection
between the topology of the surface (curvature, orientatio
etc.) and the irradiances generated at the near field. Tétat fa
can give us some clues about a good heuristic to direct the
optimization process. In this sense, other kind of decision
variables could feed the inverse design, based on curgature
instead of moving control points and weights. We thank the anonymous reviewers for their valuable com-
Other alternatives to the Hooke-Jevees algorithm can be Mments. This research has been funded by the projects
taken into account, such as Evolutionary Strategies and Ge- TIN2007-63025 (Spanish Ministry of Science and Technol-
netics Algorithms B&c949, or other heuristics such as Sim-  09Y) and UZ2007-TECO06 (University of Zaragoza). Diego
ulated Annealing KGV83] or Particle Swarm KE95]. To- Gutierrez was additionally supported by a mobility grant by
gether with the study of other optimization methods, new the Gobierno de Aragon (Ref: MI019/2007).
error metrics and distance function could be studied inrorde
to model the objective function.
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