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Abstract

Purpose — Seeks to present here a system that enables the user to design artificial worlds and
inhabitants within these worlds.

Design/methodology/approach — An alife (artificial life) approach is used in order to obtain
complex behaviour as the emergence of a set of basic behaviours which interact within the
environment and between them. Through the paper, the reader will find the necessary details to
understand the architecture and the computational model of the system, as well as the way to
use it in a specific application: modelling behaviour for synthetic cockroaches within his own
environment.

Findings — A detailed example is given of how this application can be used in simulating
ecological environments, where the user can design an inhabited ecosystem and observe (tuning it
if necessary) the evolution of the artificial ecosystem. Also outlined is another example of how this
research system can be coupled with a commercial 3D computer animation software; the goal in
this case is to produce automatically a script for a computer animation, reflecting what is
happening in the artificial world.

Research limitations/implications — The paper describes a technical research system that allows
the user to design reactive behaviour modelling for cockroaches. The next natural step is to make a
cognitive behaviour modelling and to extend it to other animals.

Practical implications — Fusion between research systems and commercial packages (in this
case, for example, behaviour modelling and 3D computer animation systems) can be an important issue.
Originality/value — The main interests of the presented system face compared with the existing
ones are the coordinated use of several alife techniques, the integral approach (design of both the
environment and the inhabitants), a computationally reasonable implementation of the system as an
artificial ecosystem, and the possibility of using the results of such a research system as an input for a
commercial 3D software in order to obtain 3D realistic computer animations.

Keywords Behaviour, Modelling, Genetic engineering, Fuzzy logic, Action research, Cybernetics
Paper type Research paper

1. Background

The development of behaviour modelling techniques can be applied to different
fields like robotics (Mataric, 1997), computer simulation (Maes, 1994), computer
animation (Tu and Terzopoulos, 1994) or virtual reality among others. In any case,
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In this context emerges the concept of animat. According to Kodjabachian and
Meyer (1994) and Meyer (1997) an animat is an artificial organism, either a simulated
animal or a robot, with proper animal characteristics. His structure and functions are
based on observed mechanisms in real animals; they are provided with sensors,
actuators, and a behaviour model that relies, in an adequate manner, the perception
system with the performed actions, making possible the survival of the animat within
his environment.

An artificial world (Merelo, 1998) is a computational model used to solve any type of
problems, using nature inspired techniques, like evolution, adaptation and competition.
These worlds can be settled in a general context of complex adaptive systems,
generally inhabited by agents, with simple and well-defined interactions, and with an
emergent global behaviour which approximates the real behaviour of the real system.

There are several programs in the literature that simulate biologically inspired
virtual worlds based on alife techniques; the reader can find more in www.rennard.org/
alife/english/liensgh.html, www.alife.org/links.html. Most of them focuses on very
concrete aspects, which makes difficult their use when the user wants to create a
general artificial world, defining and controlling both, inhabitants and environment.

In this paper, we propose an integral approach to the design, implementation and
use of an alife artefact, in order to offer to the user (an ethologist) a global simulation
environment.

Owing to this, the purpose of this paper is to wholly describe the experience of
designing, implementing and using an alife based system and to contribute to the
scientific community effort in the alife area.

The rest of the paper is organised as follows. Section 2 presents the main features of
ALVW system. Sections 3 and 4 describe, respectively, the design on the environment
and the inhabitants. Section 5 makes some reflections about the computational
complexity of the system. Section 6 shows two applications of the system. Section 7
presents some conclusions and future steps.

2. Introducing the ALVW system

The system for modelling artificial life and virtual worlds (ALVW) is a generic
platform that allows the user to design an environment as well as the inhabitants who
may live within it.

It is divided into two parts (Figure 1). The first module deals with the creation of a
virtual ENVironment (ENV). The second module is specialised in modelling the
Behaviour of the INhabitants (BIN) and is based on a perception-analysis-reaction loop.

The environment (modelled by means of a changing environment) is made up of
special elements, dynamic objects and static objects:

« Special elements are controlled by a pseudo-agent based on genetic algorithms
(GA) that controls its evolution over time.

*  Dynamic objects are those whose position changes with time, following a fixed
path with certain velocity and acceleration. Their behaviour is not based on any
agent.

+ Static objects are those whose position do not change with time.

The inhabitants are based on a perception-analysis-reaction scheme and are
characterised by an autonomous and adaptive behaviour. They make use of
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an intelligent agent composed by two modules: a “fuzzy expert system” (FES), that
analyses the values coming from the sensors, and a behaviour selection module
(SELEC) based on an action selection mechanism.

The interaction among all these elements is as follows. The inhabitants can perceive
all types of inhabitants and objects and can perform actions that modify whatever
inhabitant and object. These actions are the materialisation of one or more behaviours.
The set of all the behaviours of an inhabitant constitutes his global behaviour.

Therefore, once basic behaviours (for inhabitants) have been defined, a global
behaviour emerges when combining those behaviours with a changing environment.
The result is a set of autonomous inhabitants able to detect changes in the
environment, analyse them, to react and, depending on their behaviour, adapt
themselves to the environment.

3. Module ENV: designing the scenario

The purpose of ENV in designing scenarios is to provide a tool, powerful enough, to
model any type of object on the scene. We next define the three different types of
elements that can be used for modelling the environment: special elements, static
objects and dynamic objects.

GA are used to code and control special objects on the scenario. Any individual
element is coded by a chromosome, which is a string of » bits (0 or 1). Every bit
corresponds to a gene, and is responsible for some part of the individual
characteristics. A population with  individuals of a class of special elements will
be coded with m chromosomes.

The evolution is assured by the classical genetic operations (Goldberg, 1989):
selection, crossover and mutation. This evolution has two important characteristics: a
specific long-term goal (fitness function) and an unpredictable behaviour (random
crossover and mutation).

For example, a heat source can be coded as a special element characterised by a
value, its temperature. But besides this value it may have other attributes like position,
direction, velocity (if it is moving), increment or decrement of intensity, . . . that will be
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treated as genes. Another example would be a special element meaning danger: besides
some genes analogous to the ones in the previous example.

Dynamic objects have spatio-temporal scripts that use procedural motion control in
order to move them. This way, a fixed path is defined (although it can be randomly
generated) with a given velocity and acceleration, and perhaps with some kind of
time-varying specific characteristics. This script can be performed once or can be
cyclically repeated. As an example, the effect caused by a lightning, a light line
traversing the scenario, can be repeated regularly or it can be something unique and
accidental.

Static objects do not have any motion control method, but they can be perceived by
the inhabitants. Even though they have some attributes, they have no time or spatial
evolution in terms of motion modelling. They can be considered as obstacles in the
environment.

4. BIN module: designing inhabitants
An inhabitant is able to show a global behaviour composed of several basic behaviours
according to the perceived situation. This global behaviour follows one or more goals
and may be influenced by internal motivations. Motor actions (performed by motor
skills or commands) allow him to achieve the current behaviour(s).

The scheme for the BIN module is shown in Figure 2. This module performs the
perception-analysis-reaction loop and is composed of three main blocks: the
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perception, the analysis and the reaction ones. The first block just reads values
coming from the sensors. The second one, the analysis block, is composed of the
FES and the SELEC modules. The FES module is based on a fuzzy expert system
and processes values from sensors and provides the next layer what we call
first-level decision elements (FLDEs). Then, the SELEC module takes the FLDE and,
depending on the current behaviour, the goals, the motivations and the behaviour
characteristics of the inhabitant, decides which behaviour(s) should be carried out.
Once this is decided, the third block associates motor actions to the chosen
behaviours.

4.1 FES module: a fuzzy expert system to process environmental data
The main goal of the FES module is to analyse sensor values in order to obtain
what we call FLDEs. It provides the inhabitant with the capability of processing
single values coming from the sensors and obtaining more elaborated knowledge.
This knowledge will be used by the SELEC module to decide next action(s). As an
example we may know the temperature (15°C), and the humidity (55 per cent), but
we should decide if the ambient, combining temperature and humidity, is very good,
or only supportable for the inhabitant. Figure 3 shows the structure of the FES
module with the three main stages that have to be accomplished: fuzzyfication,
inference and defuzzyfication.

The user has to define the membership functions of the physical values involved, as
well as the rules used to infer the FLDE’s. Several other options like assigning weights
to the rules or activating and deactivating rules are available.

4.2 SELEC module: behaviour selection

The SELEC module takes as inputs the FLDE from the FES module and gives the
selected behaviour(s) to the next module. In order to do that, there is a behaviour
selection algorithm that uses a behaviour knowledge base (BEHAV), a base of truth
facts (BELIEF) and the FLDE, to choose the selected behaviour(s). Figure 4 shows this
3 different elements involved in the process.
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Figure 4.
Detail of the Selec module
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The SELEC module builds a behaviour hierarchy considering the following
aspects:

+ relative importance of all behaviours;

 integral analysis of all the candidate behaviours;

+ temporal/permanent goals and motivations fulfilment;
+ compatibility of temporal and permanent goals;

* 1inhibition between behaviours;

+ behaviour persistence;

+ opportunism; and

+ simultaneity.

4.2.1 Computational model of a behaviour. Every behaviour has a computational model
based on:

(1) a priority order (a continuous function);

@

(3) a sequence of subbehaviours (optional);
)

(4) a set of goals/motivations (a list of goals/motivations and number of
occurrences);

(5) a set of coefficients for current goals and/or motivations; and
(6) a degree of activation (a continuous function).

possible inhibitions (continuous functions);

Items (1), (2) and (3) are encoded within the BEHAV behaviour knowledge base, items
(4) and (5) are encoded within the BELIEF base of truth facts and item (6) is the result of
processing the information given by the FLDE’s, BEHAV and BELIEF.

4.2.2 BEHAV module: behaviour knowledge.

4.2.2.1 Priority order. The priority order indicates personal preferences among the
different behaviours. This order is established in every instant ¢ depending on the P,
priorities of each ¢; behaviour in that instant. The priority of each behaviour is
mathematically represented by a continuous function that evolves with time, and



whose values increase and diminish. This function defines, for every behaviour c;, a
priority P, that is a function of time and of other % behaviours:

PC[Z‘ :f(t7P617PCz7 "'7P6k)'

Using this function, the priorities can take different forms:

*  Constant value. The priorities remain constant during the simulation. Therefore,
the sequence of priority does not change as time passes: P,,; = Constant.

* One variable value. The priorities are only function of time: P, ; = f ().

« Several variables value. The priorities depend on several variables; besides the
time, the priorities of the other behaviours come into play every instant. This
reflects situations in which the preference for one behaviour increases and the
interest for other behaviours decreases.

4.2.2.2 Inhibitions. This concept reveals incompatibilities among behaviours. An
active behaviour can inhibit another behaviour completely or partially. This way, a
behaviour can be totally cancelled or gradually damped by other one. Inhj; is the
inhibition of behaviour j due to behaviour i. The total inhibition of behaviour j will
be the arithmetic mean (or other operation) of all the inhibitions caused by the
other behaviours.

The mathematical representation of inhibitions is an adjacence matrix. If there is an
inhibition arc between behaviour ¢ and 7, there will be a value comprised between 0 and
1 in the (i, j) cell. If there is no inhibition, the value will be 1. This way, for a given
behaviour its inhibition will be the arithmetic mean of its column.

4.2.2.3 Sequence of subbehaviours. The subbehaviours sequence establishes the
splitting up of certain high-level behaviours into low-level subbehaviours. The
behaviour definition is provided once and it does not vary along the simulation. There
is no parameter associated to this sequence and the selection algorithm (described in
the next section) has only to traverse it following the established order.

4.2.3 BELIEF module: base of truth facts.

4.2.3.1 Goals and motivations. There are two types of goals. The temporal goals,
that turn into goals in some moment during the simulation due to the activation of a
certain behaviour and the permanent goals, which last all the simulation. These latter
goals are called motivations in ALVW. For instance, the behaviour “eating” can be a
motivation for a greedy inhabitant and it would be a permanent goal for him. But if an
inhabitant, due to a lack of energy needs to seek and ingest food, the behaviour
“eating” would be the present goal and, therefore, a temporal goal.

There is a global list, Lgea1s/mot, that contains in every moment present goals and/or
motivations. Every list element contains a specific goal or motivation and the number
of occurrences (because it is possible that a goal or motivation is favoured by several
behaviours). When the simulation begins, the list is initialised with permanent goals.
As the simulation moves forward, the list has to be revised in order to add or delete
elements.

4.2.3.2 Coefficients for current goals and/or motivations. The goal degree fulfilment
coefficient represents the importance of the goals, and for a behaviour ¢; it is defined as
follows:
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Fulfilment_Coef(c;)

[[(Vai<Factore) If and only If Jelt € Legamotlelt € Goals(C;)

elt

0 if not

where
Vo 18 @ constant
elt is a goal or motivation present in the global goal/motivation list
Factor; 1s the number of occurrences of elt
Goals(c,) is the specific goals list of behaviour c;.

4.2.3.3 Current behaviours. The BELIEF module also monitors the current state of
every behaviour (executing or not executing). This is important for the subsequent
behaviour selection.

4.2.4 Activation degree. The mathematical representation of the abstract concept of
the current importance of a behaviour is a continuous function (one for each behaviour)
that evolves increasing or decreasing with time and which models the importance of a
behaviour compared with others during a simulation. This function is called the
behaviour activation degree.

Each behaviour has associated a preconditions list, that are those FLDEs that can
affect its possible activation. Each FLDE is represented by a continuous, increasing or
decreasing, function that evolves with time and whose value is defined in the
sensorial analysis performed in the FES module. The FLDE has a numerical
parameter, called activation threshold, that shows the minimum value so that FLDE
can be considered active.

The requirement for a behaviour to be activated and to begin to compete with the
rest of active behaviours, is that all those FLDE that conform the behaviour
preconditions list are active, i.e. above the activation thresholds:

VFLDE,; € List(C;),FLDE; > U;
where
FLDE,; is the FLDE; value in an instant #(FLDE;; € [0, Valyix])
List(C)) 1s the preconditions list of the C; behaviour
U, is the FLDE;; threshold
Valyiax 1s the maximum value for a FLDE.

The total value of all FLDE'’s for an active behaviour ¢;, is given by its arithmetical
mean:

FLDEs(C;) = LzlzLDEﬁ

where
FLDE,; is the FLDE; value in instant #(FLDE;; € [0, Valyi.x])
n is the number of FLDE's of the ¢; behaviour.



In these conditions, if a behaviour ¢; is active, its relevance in the new behaviour
selection process is given by the activation degree function, a.,, which is defined:

ac; = FLDE s(C;)op Fulfilment coef(c;)op Inh.,0p P

where
FLDE s(C)), Fulfilment_coef(c;), Inh,;and P,; have been previously defined
op is the type of operation used (* or other).

A behaviour importance sequence is obtained by sorting the activation degrees of each
behaviour at every instant of time (Figure 5). Some simple arcs can be observed; they
define the degree of importance of five behaviour nodes at instant 7. There are also
some double arcs that represent inhibition between node 1 and the nodes 2, 3 and 4.
Finally, there are two behaviour nodes, 2 and 3 that are made up of several
subbehaviours as defined by the triple arcs that come out from both nodes. Each
behaviour node is activated by means of one or more FLDE (in the example each
behaviour has only one FLDE).

Summarising, the computational model of every behaviour is made up of the
following elements:

+ a priority ( € %) that can be a function of time or of other priorities;
+ a possible inhibition ( € %), consequence of the inhibition graph;
+ a possible subbehaviour sequence, reflected in the subbehaviours graph;

+ a set of goals which will be fulfilled in case of activation;

—> Activation degree arcs

:’ Inhibitions arcs

——— = Subbehaviours arcs Loo% /" Taking
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+ a coefficient showing the degree of fulfilment that reflects the support of goals
and motivations;

+ a set of elements of first level of decision ( € %) that determine if a behaviour is
active or not;

« an operation type (* or other); and
+ an activation degree ( € Z).

4.2.5 Behaviour selection and types of behaviour.

4.25.1 Behaviour selection algorithm. The behaviour selection algorithm in the
SELEC module evaluates all possible next behaviour(s) and chooses the next one(s).
The selection algorithm has the following aims:

+ to perform an integral analysis of all behaviours;

+ to follow temporal/permanent goals;

* to consider inhibitions between behaviours;

+ to divide (if possible) behaviours into subbehaviours;

+ to take opportunism and/or simultaneity into account; and
+ to assure persistence, avoiding dithering, remembering.

We describe now the basic steps of the selection algorithm. First of all, it computes the
activation degrees for all the behaviours. Afterwards, all non-inhibited behaviours are
analysed, and the one with higher priority is chosen. This may produce a change in
the current behaviour(s). If no new behaviour is chosen attention is given to the current
behaviour(s). There are three issues that have to be taken into account.

Opportunity. In some situations, it could be interesting to stop, for a short time,
current behaviour(s) and to execute another one. For example, if some nice food
appears when escaping from a not very huge danger, it may be opportune to stop and
eat a little and, afterwards, to continue escaping. That is why the action-selection
algorithm, when considering current behaviour, takes a look to the rest of the
behaviours to see if there is one candidate to be opportune.

Avoiding dithering. The constancy in selecting and maintaining behaviours is
crucial to accomplish goals. To do this, a pile contains information about the tasks that
have been interrupted but that should be continued later; using this strategy it is
possible to “remember” behaviours that have been suddenly changed and not finished,
and i1t would be possible to resume them later. It is also a way of improving persistence
of behaviours.

Simultaneity. Several behaviours can be executed simultaneously, as it is very
natural to have more than one behaviour in parallel.

To implement all these aspects several types of behaviour are defined.

4.2.5.2 Types of behaviour. The three main types of behaviour are:

(1) Normal behaviours. They are the main block of an inhabitant behaviour.

(2) Opportune behaviours. They may interrupt a normal behaviour (for a finite
amount of time) allowing the temporal fulfilment of an advantageous behaviour.

(3) Simultaneous behaviours. Their activation may be parallel to the activation of a
compatible normal behaviour in execution.



Both normal and opportune behaviours can be split up into one or more subbehaviours
(conditional or temporal). Therefore, when one of these complex behaviours is selected,
their subbehaviours are sequentially executed.

4.2.5.3 Proceeding to change a behaviour: the action selection mechanism that
decides the winner. When all the activation degrees have been calculated, the
behaviour with the greater one has to become the new behaviour (if it is not already
active). Nevertheless, this general rule can be modified in order to favour for instance
persistence, goals’ consecution or the complete fulfilment of behaviours. Therefore,
when the activation degrees of the “winner” behaviour and that of the actual one are
similar, there will be a change only in case of emergency. Each behaviour C; has an
attr1bute to define its emergency. In case of draw between its activation degree, et
and those of other behaviours (active or not) this attribute defines if the behaviour is
prior or not (emergency situation). The difference Diff(C;, C;) between the activation
degrees of two behaviours C; and C;, defined as la.; — a.l, is used to decide the
winner.

Dithering is usually detected among incompatible behaviours (these kinds of
hesitations are typical of coupling situations as seeking food/danger or approach to
female/danger). The system solves dithering using an hesitation level table, computed
during execution.

4.3 MOTOR module

Once the current behaviours have been selected, the motor skills associated to the
current behaviours have to be called, as it is shown in Figure 6. The MOTOR module
does this.

This module takes the behaviour selected by the SELEC module, and calls the
corresponding motor functions that perform pertinent actions on the inhabitant
(locomotion), on the environment (eating) or on other inhabitants (reproduction).
Depending on the type of motor actions and on the sensorial information they may
need, this module would need to consult the perception module.
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Figure 6.
Motor skills vs behaviours
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Figure 7.
Computer complexity of
the system

4.4 User fine-tuning
The user can fine-tune the system by means of files or manipulating directly certain
modules to adjust:

« rules, linguistic variables and FES belonging functions;

* behaviour’s priority order;

+ inhibitions among behaviours;

+ goals and motivations fulfilment degree;

+ activation degrees (consequence of the four previous ones);

+ breaking down a behaviour into subbehaviours;

+ sensorial system (fitting up/dropping out or sensor modification); and

+ motor system (fitting up/dropping out or motor command modification).

5. ALVW technical specifications and computational complexity
The ALVW implementation has the following features:

+ Object oriented
« CC++
+ MAC platform.

Regarding time management, the system clock has been used to control all those
simulation aspects that have to deal with the real time passed during the simulation,
such as the inhabitant’s growth. Nevertheless, the user has been provided with a tool
that allows moving forward in time. It can be used, for example, to accelerate the growth
of a particular inhabitant. This time acceleration depends on the computer performing
the simulation (CPU PowerPC G3, 266 MHz, 256 MB RAM) and on the system
complexity, which is a function of the number of inhabitants within the scenario.
In Figure 7 the time necessary to perform a complete perception-analysis-reaction loop

CPU time by basic process cycle
(Visualization is not taken into account)

1.5

1.3

1.1
0.9

= —— CPU time/cycle (secs.)

0.7
— ¥ 3 .
/ - Linear aproximation
05 =

Time (secs)

e Logarithmic approximation
0-1 __'_'_,_,-—l-'_"-':‘d—,-
= = T T T T T T T T
01 1+—= [=] (=] [=] =] e o O e o r=]
£ B CY R e 2 & e © ©
03 - & ® % n @ K~ ® & 9

Number of roaches in the
environment



(without considering visualisation) is plotted against the number of inhabitants. In the
figure a linear and a logarithmic fitting are also shown. As it can be seen, the complexity
evolution is almost linear and basically depends on the number of inhabitants.

6. An application of ALVW: Kukasim

In this section we present an application named Kukasim (Figure 8), based in the
ALVW system described in the previous sections. This ALVW-based application
allows the user to model both inhabitants as well as the virtual environments they are
going to live in.

6.1 Kukasim simulations
Kukasim simulations allow to create an artificial environment where the evolution of
synthetic cockroaches is studied over a period of time. To run a simulation, a series of
rules must be set, to define the behaviours and the special elements, as well as some
general parameters such as initial number of cockroaches, maximum allowed number
during the simulation or several reproduction parameters for the females.

The complete process for each iteration of the simulation is as follows:

+ perception of the environment through the simulated sensors;
+ evaluation of the perceived variables through the FES;

+ assignation of a behaviour;

+ change of motor commands according to the current goal; and
+ visualisation of the new situation.

The user can interact with the simulation in several ways:
+ adding new elements to the environment;
+ eliminating elements;

+ changing the climatic conditions by defining a new station for the simulation
(spring, summer, fall or winter); and

+ fast-forwarding the simulation or forcing concrete situations.
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Figure 8.
Kukasim: an application
based on ALVW
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Figure 9.
Kukasim user interface

At any given time, the user can visualise (modifying some of them) the following
elements (Figure 9):

+ behaviours (normal, opportune and simultaneous);
+ vital data (energy and age);
« FLDE data; and

+ map with an overall view of the artificial environment, indicating the position of
the inhabitants.

6.2 Experimenting with Kukasim

The ALVW system is a generic and open system which may be used to define any
virtual environment and any inhabitant(s) based on a perception-analysis-reaction
scheme. In the example we present, it has been used to model the behaviour of
cockroaches. The simulator Kukasim allows the animator to define an environment (a
kitchen which is the cockroach’s habitat), to design inhabitants (cockroaches) who
perceive, think and react in this environment. The use of the simulator enables to
follow the evolution of the artificial world.

Table I shows the different kinds of elements modelled within Kukasim.

During the simulation the user has visual information of the main properties of the
inhabitants (Figure 10).

As it has been explained, performing a simulation implies repeating a
perception-analysis-reaction loop. The user can modify the frequency of this loop,
and he can even run the system step by step or stop it. These controls allow the user to
check some parts of the simulation with the required level of detail.

s
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In the following figures several experiments using Kukasim are presented.

Figure 11 shows the percentages of every behaviour and the different types of
behaviour in a simulation run. As it can be seen, danger escaping has been the most
used behaviour, followed by the eating and looking for good ambience behaviours. The
figure gives an idea of how the system is using the different types of behaviour. Most
of the time, the roach is using the normal behaviours. In Kukasim, obstacle avoidance,
for instance, is defined as an opportune behaviour, so every time the roach is avoiding
an obstacle, it uses an opportune behaviour.

In Figure 12, the results of an experiment whose goal was to check the correctness of
the exploring behaviour is shown. This behaviour makes a cockroach to wander
around pleasant areas when possible. A cockroach decides if an ambience is pleasant
or not analysing the quantity of light, the temperature, and the humidity (not very hot,
not too dry, and not a too bright defines a pleasant ambience). As it can be observed the
roach succeeds in remaining in pleasant areas.

Food, temperature, humidity, danger, light

Light sensors, chemical sensors, special sensors
Staying quiet, wandering, looking for food, eating,
escaping from danger, obstacle detecting/avoiding,
looking for female, mating, looking for better
ambience

Moving towards/away, setting velocity, mating,
eating

Special elements
Sensors
Behaviours

Motor commands
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Table 1.
Different elements
modelled in Kukasim
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Figure 10.
Visual information during
a simulation
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Figure 11.

Percentages of execution
of every behaviour and
different types of
behaviour used during one
session

O Danger escaping

H Eating

O Looking for food

O Wandering

H Looking better ambiance
O Looking for female

E Mating

16%
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O Normal Behaviour
B Opportune Behaviour
O Simultaneous Behaviour

Figure 13 shows the energy evolution for a cockroach during a session. The starting
level is a random value, and then, every time the energy is going under a certain level,
the roach has to find a food source, and eat in order to gain energy. If the roach remains
alive, the energy level varies under a regular interval.

Figure 14 shows life expectancy of a roach (in minutes) related to the number of
dangers in the environment. It also shows the number of escaping trials, which grows
as the number of dangers increase.

6.3 Using Kukasim in computer animation

The process of creating a 3D animation is by no means a simple one. Typically, the
process is done by keyframes: the animator sets property values or keys (such as
position of the legs of the cockroach or the situation of its centre of gravity), at specific
frames, called keyframes. Values for the frames in between are calculated by the
computer by interpolation, in a process known as in-betweening, thus producing the
animation. Of course, this is the most basic way of creating computer animations with



Evolution in time of the “Ambiance quality” perceived
by a roach (sampled every 4 minutes)
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today’s commercial packages. More advanced techniques include inverse kinematics,
dynamics, constraints or expressions.

This is a very counterintuitive way for animators to communicate with the
computer, especially in the case of animating 3D characters, with several articulations
and joints that need to move in a convincing way. Animation studios will usually hire
technical directors to design high-level interfaces for the animators that hide the
complexities of the animation process, thus reducing the gap between the human and
the machine.
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Figure 12.

Evolution in time of the
“ambience quality”
perceived by a roach
(sampled every 4 min)

Figure 13.
Energy evolution in time
for a roach
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Figure 14.

Dangers and life
expectancy (environment
with three different classes
of dangers and up to ten
food sources)
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We have tested a novel approach for producing 3D animations that starts with the
simulation ran in the Kukasim system. Figure 15 shows an overview of the production
of a 3D animation from the stored data of the execution of a simulation.

On the left of the Figure 15 (step 1) the simulator is running, and any relevant
change of the state of the virtual ecosystem is stored on disk. Once a simulation is over,
this data is integrated with a complete 3D geometric, visual and motion modelling of
the cockroach and its environment, stored in a commercial 3D package (steps 2 and 3).
The transferring of the data from the simulator to the commercial software is done via
a custom plug-in written by the authors that transforms it into a format the package
understands and can use. Plate 1 shows one frame of the animation produced in this
way.

7. Conclusions and future steps
Our alife behaviour modelling system, named ALVW, allows us to design and manage
artificial worlds and the inhabitants who live within it.

Global behaviour emerges from basic behaviours. A bottom-up approach is used:
defining several basic and simple behaviours and letting them interact and compete
among them, yields to more complex behaviours.

A specific application of the ALVW system, related with the modelling of
cockroaches, has also been presented. The simulator, called Kukasim, has been used to
design an ethologic simulation and observation laboratory and the results obtained for
the moment have been fully satisfactory. We have shown also how to use Kukasim in
the computer animation field, as an automatic scripts generator, and how it is possible
to embed the Kukasim results within a 3D commercial software.

In spite of the results obtained, there is still a lot of space left for improvement. The
creation of intelligent autonomous entities relies on three mainstays: behaviour,
learning and cognition. In the paper, behaviour has been profusely treated. We will
now make some comments about the other two.
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Plate 1.
A snapshot of the 3D
animation obtained

Learning is the capability, present up to the point in all natural systems, to adapt
themselves to their environment. From a computational point of view, it can be
understood as the process to obtain some kind of function that allows to achieved,
based on previous experiences, general laws about the environment. This way, the
entity will be capable of adapting itself to the environment and of interacting with it in
a way optimised from the point of view of its goals. In order to obtain a solution
characterised by a good generalisation capability, the learning algorithms should allow
the construction of a cost function that will be optimised by means of the entity’s
personal experiences. As learning via experience seams to have a strong statistical
component, the problem has a notorious complexity due to the scarce number of
variables associated to the input space, and to the shortage, dispersion and uncertainty
of the samples (experiences). Relevant works in this subject are those of Vapnik (2000)
and Hastre et al. (2001).

In more advanced animals there is a more flexible coupling between perception and
action due to intermediate processes such as memory, attention, language, ... The
result of all these processes is what is called cognition. The cognitive architectures are
based on some common principles that connect sensorial stimuli with arbitrary
sensorial experience associations, and on the selective improvement of this experience
via learning and attention mechanisms. Cognition is a complex process that cannot be



only understood in terms of stimulus-reaction schemes. The goal of cognitive processes
is to translate the sequence of experiences and the environment stimuli into internal
representations of reality. These cognitive “maps” are, in fact, subjective models of the
external world. Outstanding works in this field are those of Lopez and Connell (2001)
and Funge (1999).
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