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ABSTRACT 

Most of the current appearance acquisition methods require the use of specialized equipment, involved capture sessions 

and/or large data sets. We propose a single-image approach which greatly simplifies the process, and allows to estimate 

reflectance properties of both opaque and translucent objects. Given the under-constrained nature of an image-based 

approach, we leverage two well-known illumination models, Phong and the diffuse approximation, to reduce the high-

dimensional parameter space. The formulation is that of an optimization problem and satisfactory results are obtained 

using an implementation based on genetic algorithms. Additionally, a study is carried out to provide guidance in the 

election of the configuration parameters of the genetic algorithm. 
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1. INTRODUCTION  

Realistic image synthesis requires precise reflection and scattering models of real-world materials. As 

rendering algorithms become more sophisticated, efficiently simulating all aspects of light transport, a new 

area of research has gained importance over the last few years: appearance acquisition. Capturing the 

appearance of an object implies obtaining its BSSRDF (BRDF in the simpler case of non-translucent 

materials), in order to be able to model the interaction of light with that object.  

The problem of capturing the appearance of a certain material can be faced from different approaches. 

When the actual object whose material is to be captured is available, specific measurement equipment and 

methodology allow for the acquisition of the reflectance parameters (see Related Work for details). However, 

this may not be the case, and then image-based approaches offer an alternative, less costly both in terms of 

time and equipment. Our work focuses on this second approach, and in particular in single-image acquisition, 

as opposed to other methods which require large sets of images under different angles or lighting conditions. 

Obtaining the reflectance parameters from an image falls within the more general problem of inverse 

rendering. In a traditional direct rendering approach the lights, material, camera position and geometry of a 

3D scene are known parameters used in the generation of the final 2D image. However, in many cases it is 

useful to obtain unknown information of the 3D scene from a rendered image, a problem known as inverse 

rendering. This includes inverse lighting (i.e. estimating the position and characteristics of the light sources 

of the scene), estimation of the camera position and orientation, obtaining the geometry of the scene, and 

appearance acquisition. As the complete problem of inverse rendering is highly under-constrained, previous 

knowledge of any of these (lights, geometry, camera position or appearance) is usually leveraged to 

determine the rest of them. A detailed survey covering this topic can be found in the work by Patow and 

Pueyo (2003). In our case, the specific problem of appearance acquisition will be explored, assuming that the 

rest of the information of the 3D scene is known, and starting with a single image as input. 

Our approach poses appearance acquisition as an optimization problem. Starting from an initial set of 

reflectance parameters, successive images are rendered (see Figure 2) and compared with the original input 

image until the objective function, defined as the error between both images, falls below a certain value (or 

alternatively until a maximum execution time is exceeded). The method we propose to solve this 

optimization problem is based on genetic algorithms, which have already proved efficient to solve different 

combinatorial optimization problems (Goldberg, 1989; Reeves, 1995). Genetic algorithms are probabilistic 
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heuristic algorithms for search and optimization which apply the concepts of biological evolution: each string 

of parameters to optimize is analogous to a chromosome, and the way in which these strings are generated 

and evaluated when searching for the best solution applies the concepts of natural selection, reproduction and 

mutation. Whenever solving an optimization problem, falling into local minima of the objective function is 

always a concern, and in our case the objective function has a large number of them. Statistically, genetic 

algorithms have been demonstrated to be less prone to this problem than other well-known optimization 

methods, as mutation favors diversity, increasing the probability of overcoming local minima.  

In this paper we show how genetic algorithms can be used to capture the appearance of an object in an 

image. Besides, we also provide insight into how to configure the parameters of genetic algorithms when 

applying them to the specific problem of appearance acquisition, and their influence on the behavior of the 

algorithm and the final result. 

1.1 Related Work 

An obvious choice to measure general reflection properties is using a gonioreflectometer (Li et al., 2006), but 

a complete characterization of a spectral, anisotropic BRDF may require up to 105 samples, so several 

optimization strategies have been introduced. By using a camera instead of a single photoreceptor, lots of 

samples can be obtained simultaneously (Ward, 1992). However, calibration issues need to be considered, 

which make measurements less precise. 

More general solutions that include sub-surface scattering capture typically use complex measuring 

equipment (Matusik et al., 2002; Debevec et al., 2000; Goesele et al., 2004; Peers et al., 2006). Image-based 

approaches, while simpler in conception, usually require large sets of data acquired from different angles 

and/or lighting conditions (Yu et al., 1999; Lensch et al., 2003; Shen and Takemura, 2006; Ghosh et al., 

2008). Reduction of these sets can be achieved by adding some knowledge of the geometry of the object 

whose optical properties are being captured (Boivin and Gagalowicz, 2001). 

Wu and Tang (2006) separate the sub-surface scattering component of a BSSRDF, starting from a single 

image together with a set of diffuse priors. Other methods to capture a generalized BSSRDF from single 

images impose constraints on the positions of the camera and light sources (Wang et al., 2008). We refer the 

reader to the excellent work by Weyrich and colleagues (2008) for a more comprehensive overview of 

appearance acquisition techniques. 

In our work, we are interested in exploring the feasibility of appearance acquisition of complex materials 

by using genetic algorithms. This approach has been successfully used before in the field of computer 

graphics for texture synthesis, analysis and parameterization (Sims, 1991; Salek et al., 1999), image-based 

simulation of facial aging (Hubball et al., 2008), image recognition (Katz and Thrift, 1994; Koljonen and 

Alander, 2006), or extraction of geometric primitives (Roth and Levine, 1994). 

2. GENETIC ALGORITHMS 

As any other optimization method, a genetic algorithm tries to find a set of variables, (x1, x2, ..., xn), so that 

the objective function, F(x1, x2, ..., xn), reaches its minimum (or maximum). Given that each possible set of 

input variables (x1, x2, ..., xn) is equivalent to a chromosome (i.e. an individual) and each parameter xi is 

denominated genei, the analogy with the theory of evolution is immediate: starting from a population of n 

chromosomes, each of them delivers a solution to the problem, and only the chromosomes yielding the better 

solutions survive to produce the next generations and perpetuate their genetic material. Genetic diversity is 

completed by sexual reproduction and random mutations. This section gives an overview of how these 

algorithms work, but we refer the reader to Winter and colleagues' work (Winter et al., 1995) for a more 

comprehensive explanation on genetic algorithms and their application. 

The algorithm consists of four steps: initialization, selection, reproduction and termination. Selection and 

reproduction are iterated until the condition for termination is reached. 

Initialization. The first step implies the creation of an initial population of individuals (or sets of 

variables corresponding to the parameters we want to estimate). The genes of these individuals are generated 

randomly within the search space, unless any prior knowledge exists. 
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Selection. In order to apply the principle of natural selection, it is necessary to evaluate the performance 

of each generated individual. To do this, each individual is assigned a rating, called fitness, representing the 

proximity of that individual to the solution. Chromosomes are then ordered according to their fitness and the 

ones with the lowest fitness values are eliminated and substituted by the descendants of the surviving 

chromosomes (based-on-rank selection). This way only the genetic material delivering the best results is 

perpetuated. 

Reproduction. This step entails the creation of the next generation using two genetic operators: crossover 

and mutation. Crossover is a genetic operator used for exchange of genetic material, in which two 

chromosomes are randomly selected and an exchange of genes between them is performed. Mutation, on the 

other hand, ensures genetic diversity from one generation of individuals to the next by randomly modifying 

the value of some genes. 

Termination. Typical termination conditions of the iterative process are a solution being found which 

satisfies a certain minimum criterion, the specified maximum number of generations being reached or the 

solution found not being able to be improved any further.  

In the following section, we present our adaptation of the genetic algorithms approach to the problem of 

appearance acquisition, and comment on some implementation details. 

3. APPEARANCE ACQUISITION 

3.1 Variables and Objective Function 

To be able to run genetic algorithms for appearance acquisition, we first need to define the variables and the 

objective function. Our method works both for opaque and translucent materials, and the objective function is 

an error function, defined in both cases as the difference between the input image and the image rendered in 

each iteration with the estimated parameters. However, the reflectance parameters being sought, i.e., the 

variables of our optimization problem, differ in each case. In order to reduce the dimensionality of the 

problem, we assume that other parameters such as the lighting or the geometry of the scene are known. 

It should be noted that whilst the parameters are calculated in RGB, the error function, i.e. the difference 

between the original and the successively rendered images, is computed in the YCrCb color space, which is a 

perceptual color space (Poynton, 1996). This yields better results than comparing the images in non-

perceptual color spaces such as RGB. 

3.1.1 Opaque Materials: Phong Illumination Model 

For opaque materials, interaction of light with the surface of the object is rendered using the Phong model 

(Phong, 1973), but more complete models such as Blinn-Phong could be modeled as well. The illumination 

on a certain point p on the surface is obtained as the sum of the ambient, diffuse and specular components as: 
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indicates the direction of the rays of light from a light source to a point of the surface, N is the normal 

to the surface, R
�

 indicates the specular direction and V
�

 the direction joining the point and the camera. Ia, Id 

and Is are the ambient, diffuse and specular intensities, respectively. The parameters which need to be 

estimated by the algorithm are the ambient, diffuse and specular reflection constants ka, kd and ks, 

respectively, plus the Phong exponent �.  

Determining these would imply obtaining 12 parameters (four for each of the three channels of the color 

space). However, in order to reduce the complexity of the problem we have made some assumptions. In most 

cases ks and � have no significant spectral dependency, and therefore in our model we consider one same 

value for the three channels of these parameters. Besides, the term corresponding to ambient illumination 

(kaIa) makes a constant contribution throughout the image; we do not calculate it for simplicity and for 

further reduction of the parameter space, but doing so would be trivial. These reasonable assumptions reduce 

the number of parameters sought to five (kd,R, kd,G, kd,B, ks and �). Finally, as the interpretation of � from a 
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perceptual point of view is not straightforward, in order to handle a variable which gives more perceptual 

information b is calculated instead of �. We define b as the angle covered by the specular highlight, and the 

relation between them is simply given by: 
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3.1.2 Translucent Materials: Diffuse Approximation Illumination Model 

When working with translucent materials the presence of subsurface scattering requires a more complex 

illumination model. We have used the diffuse approximation model described by Jensen et al. (2001), which 

decouples single and multiple scattering. Single scattering is obtained in a precise way, whereas multiple 

scattering is approximated by means of dipole diffusion. The complete BSSRDF describing the outgoing 

radiance at point 0x  in direction 0w
�

 is thus the sum of both components: 
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where Sd and S(1) represent multiple and single scattering respectively. These terms are given by: 
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where E(xi) represents incoming irradiance, F=Ft(�, 0w
�

)Ft(�, iw
�

) is the product of two Fresnel 

transmittances, s´i and s indicate scattering paths and � is an exponential attenuation function. Rd is the 

diffuse reflectance function, which is computed as (see Table 1 for a definition of all the symbols): 
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Using this formulation (for the complete details and derivation of these equations, consult Jensen et al. 

(2001)), it can be shown that the diffuse approximation model depends on only four parameters (Xu et al., 

2007): �s (scattering coefficient), �a (absorption coefficient), � (relative index of refraction) and p 

(normalized phase function), which may additionally show spectral dependencies. 

As previously done with the Phong model, in practice the parameter space is reduced making reasonable 

assumptions in order to simplify the problem without compromising the final results. The final string of 

parameters to estimate consists of: � (assuming the same value for the three color space channels), g (mean 

cosine of the scattering angle, from which p can be calculated using a Henyey-Greenstein formulation), 

�s,R���s,G���s,B���a,R���a,G���a,B and b (related to the Phong exponent as shown in equation (2) and used to 

render the highlights of the translucent object), i.e. 9 parameters. 

Table 1. Symbols used in the formulation of the diffuse approximation model 

�s Scattering coefficient � Relative index of refraction 

�a  Absorption coefficient p Normalized phase function 

�t=�a+�s� Extinction coefficient Fdr=-1.440/�2+0.710/�+0.668+0.0636� 

�´s=(1-g)�s Reduced scattering coefficient A=(1+Fdr)/(1-Fdr) 

�´t=�a+�´s� Reduced extinction coefficient zr=1/�´t , zv=zr(1+4A/3)  

�´=�´s/�´t� Reduced albedo r=||xi - x0|| 

tatr ��� �� 3 � Effective extinction coefficient 2222 , vvrr zrdzrd ����  
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3.2 Implementation of the Algorithm 

We provide here some insight on how the genetic algorithms framework maps to our appearance acquisition 

problem. A discussion of the influence of the specific configuration parameters is provided in subsection 3.3. 

The first step of any genetic algorithm is initialization. A set of chromosomes consisting of strings of 

reflectance parameters (nine in the case of translucent and five in the case of opaque materials, as explained 

in the previous subsection) are set. In this first generation the parameters could take random values within the 

search space, but, in order to accelerate convergence, we fixed the initial estimations of the different 

parameters to common values, shown in Table 2. The number of chromosomes created is a configuration 

parameter of the algorithm. 

Table 2. Initialization values of the sought parameters 

Phong model Diffuse approximation model 

kd,(R,G,B) ks b � g b �s,(R,G,B) �a,(R,G,B) 

0.5 0.5 10 1.3 0 10 1 1 

 

An image is then rendered for each of the chromosomes created in each generation to calculate the fitness 

value of each chromosome and thus perform the selection step. This fitness value is calculated with a per-

pixel least squares function measuring the difference between the individual channels in the original and the 

rendered images in the YCrCb space. The set of parameters delivering the most approximate solution are 

used to create the next generation. The number of chromosomes being replaced is another configuration 

parameter of the algorithm. 

Once the best chromosomes have been selected, reproduction, involving crossover and mutation, takes 

place. In our implementation crossover is performed at only one point of the chromosome (i.e. two parent 

chromosomes are cut at one point and one part of each combined to form the child chromosome), which has 

proven enough for our objectives, but more complex crossover procedures are also possible. During 

mutation, gene values vary between � 0-30% of their original value. Our research shows that greater 

variations introduce a too random behaviour and control over the evolution of the algorithm is easily lost, 

whereas very small variations need many generations for the algorithm to reach a valid solution. 

The processes of selection and reproduction continue iteratively until the termination condition is met. 

Given that our goal is to study the effectiveness of the algorithm and the influence of its configuration 

parameters on the final result, we simply define our termination condition as a fixed number of generations. 

This suffices in our context, although changing the termination condition to an error threshold is 

straightforward.  

3.3 Parameter Space 

Genetic algorithms have a series of input parameters (initial number of individuals, crossover and mutation 

probabilities, etc), whose correct configuration is vital in reaching a consistent solution within a reasonable 

execution time. In order to select the most adequate values for these parameters, we have performed a series 

of tests, taking into account both the accuracy of the final solution and the computation time required. The 

results of these tests for the most relevant configuration parameters are discussed here, and can be seen in 

Figure 1 for the case of the Phong model. The accuracy was measured as the difference between the real 

ground truth value and the value obtained by the algorithm, expressed as a percentage of the ground truth 

value.  

Probability of replacement. The probability of replacement accounts for the percentage of individuals 

which are eliminated in each selection process. Following the evolution simile, the higher this probability is, 

the faster the population evolves. However, running times also increase significantly, as all the chromosomes 

and their corresponding image need to be created for each generation. As seen in Figure 1 (left) it is one of 

the most influential parameters of the algorithm, both in time and in accuracy of the result. 

Probability of crossover. As explained in Section 2, crossover represents sexual reproduction and takes 

place after the selection and replacement process. The probability of crossover represents the percentage of 

individuals which are the result of combining the genes of two survivor chromosomes. Figure 1 (center left) 

shows how an increase in sexual reproduction (hence favoring genetic diversity) causes the percentage of 
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error to decrease slightly. As the resulting images of more combinations of genes need to be calculated, 

execution time increases slowly. 

 

 

 

Figure 1. Percentage of error (top row) and execution time (bottom row) as a function of, from left to right, the 

probability of replacement, the probability of crossover, the probability of mutation and the number of individuals in each 

generation. Data obtained for the Phong model. 

Probability of mutation. Representing the percentage of genes which mutate from one generation to the 

next, this probability is critical when working with a small number of individuals per generation. Variations 

in the initial genes are crucial to progressively reach the optimal solution and to avoid falling into local 

minima; the higher this probability, the lower the percentage of error with minimum time penalty (see Figure 

1, center right). 

Number of generations. The number of generations is, together with the number of individuals per 

generation discussed below, the parameter with the greatest influence. It indicates the number of generations 

which are created before the algorithm terminates and delivers a solution (alternatively, an error threshold 

can be trivially set as termination parameter). Figure 2 shows how the solution progressively evolves along 

generations. With an infinite number of generations, the solution would perfectly match the original. In 

practice, a compromise has to be found between execution time and accuracy of the solution, determined by 

the number of generations. 

Number of individuals per generation. The effect of the number of individuals of each generation in the 

performance of the algorithm is straightforward: the more individuals, the least the percentage of error, as 

more possibilities are evaluated. However, there is a substantial increase in the execution time, as shown in 

Figure 1 (right). 

4. RESULTS 

We have presented a method based on genetic algorithms suitable for capturing the appearance of opaque and 

translucent materials depicted on a single image. The algorithm converges to an approximate solution in 

reasonable times with little user interaction. Figure 2 shows how the algorithm works, as the image rendered 

with the estimated parameters evolves through iterations converging to the input image. As our aim was to 

study the performance of the algorithm and the influence of the configuration parameters our termination 

condition was set to a maximum number of generations, i.e. 50, and not to a maximum error between the 

final and input images.  
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Figure 2. Evolution of the result of the genetic algorithm as the number of generations increases. Left: original image 

from which the Buddha’s reflectance properties are meant to be captured. Rest (from left to right): partial results every 

ten generations, showing convergence to the solution. 

Table 3. Evolution of the values of the estimated reflectance parameters as the number of generations increases 

 Ground 

truth 

Initial 

value 

Generation 

#10 

Generation 

#20 

Generation 

#30 

Generation 

#40 

Generation 

#50 

Percentage 

of error 

�� 1.5 1.3 1.18195 1.29587 1.36760 1.35480 1.35480 9.7 

g 0.5 0 0.43301 0.49859 0.50151 0.50151 0.50151 0.3 

b 20 10 15.8393 17.6512 18.4832 18.4832 18.4832 7.6 

�s,R 2.19 1 1.31844 2.26811 2.26811 2.07799 2.07799 5.1 

�s,G 2.62 1 1.80584 2.76615 2.76615 2.54309 2.54309 2.9 

�s,B 3 1 2.24059 2.42196 2.42196 2.91114 2.91114 3.0 

�a,R 0.0021 1 0.04108 0.01706 0.01527 0.01527 0.00685 226.2 

�a,G 0.0041 1 0.01207 0.03432 0.02742 0.02742 0.00916 123.4 

�a,B 0.0071 1 0.00650 0.00477 0.00948 0.00948 0.00725 2.1 

 

The actual ground truth values of the reflectance parameters and the evolution of the estimated values can 

be seen in Table 3. Even though the number of generations is not very large almost all errors are below 10%, 

and it can be seen that those parameters which have very large errors do not have a significant relevance 

perceptually in the final result. 

Additional results are shown in Figure 3. The probabilities of replacement, crossover and mutation were 

all fixed to 0.8, the number of generations was 50 and the number of individuals in each generation was set to 

40. All images in this paper have been rendered on an AMD Opteron Quad-core machine @3GHz and 4GB 

of RAM, and took between 15 and 20 minutes in the case of translucent materials and around one minute in 

the case of opaque objects. For the diffusion approximation, we have used the fast hierarchical rendering 

technique of Jensen and Buhler (2002). 

5. CONCLUSIONS AND FUTURE WORK 

Obtaining the reflectance parameters of a certain material from a single image can be posed as an 

optimization problem in which the error between the original image and an image generated with the 

estimated parameters is the objective function. To solve it, an implementation based on genetic algorithms 

offers a solution within the specified error range in a reasonable execution time as long as the configuration 

parameters of the algorithm are chosen wisely.  

Genetic algorithms have already proved useful in solving non-structured or inverse problems in many 

other fields, but configuring their input parameters remains a fundamental task which varies across 

applications, and has to be individually studied for each specific optimization problem. The correct election 

of these parameters is a key aspect for achieving a valid solution in an acceptable execution time, as 

expectedly more accuracy in determining the solution implies higher execution times. We have studied the 

influence of the different configuration parameters of the genetic algorithm in both the accuracy of the result 

and the execution time of the algorithm, providing guidance for future implementations. Special attention 

must be paid to the number of individuals per generation and to the percentage of individuals being replaced 

in each iteration, given their stronger influence in both computational cost and accuracy of the result. 
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 Ground 

truth 

Generation 

#50 

Percentage 

of error 

�� 1.5 1.48675 0.9 

g 0.5 0.34655 30.7 

b 20 18.1909 9.1 

�s,R 0.5 0.49969 0.1 

�s,G 4.5 3.64219 19.1 

�s,B 2.6 1.77309 31.8 

�a,R 1.5 1.40514 6.3 

�a,G 0.11 0.08945 18.7 

 �a,B 1 0.97393 2.6 
 

 

    

    

 Ground 

truth 

Generation 

#50 

Percentage 

of error 

kd,R 0.3 0.3019 0.6 

kd,G 0.7 0.7043 0.6 

kd,B 0.3 0.3015 0.5 

ks 1 0.9686 3.1 

b 40 37.439 6.4 

    

 
    

Figure 3. Left column: Original image. Right column: Image rendered with our algorithm. In the top row the material is 

translucent, and thus modeled with the diffuse approximation model. The bottom row shows an opaque material, modeled 

with the Phong model. Rendering times are around 20 minutes for the translucent one and 1 minute for the opaque one. 

Tables next to each pair of images show the values of the sought parameters in the input image, the estimation obtained 

after 50 iterations of the algorithm and the relative error between them. 

One of the main lines for future research is exploring the possibilities that mutation techniques can offer 

with the objective of accelerating convergence to the solution and of overcoming local minima. Besides, the 

operation with the highest cost is rendering the scene with each set of parameters for evaluation by 

comparison with the original image, so creating the chromosomes of possible solutions intelligently instead 

of relying on brute force is vital, and more sophisticated mutation functions could also help in this direction. 

To reduce the parameter space, we have assumed that information of light sources, geometry and camera 

position was known, and only the reflectance characteristics of an object in the image were unknown. It 

would be interesting to stress our approach further and see how genetic algorithms perform as the problem 

becomes even more ill-posed. 

Further strategies which can improve the implementation include parallelization. As mentioned, the 

bottleneck of the implementation lies in generating an image for evaluation for each string of parameters; 

given that these strings are completely independent between them, several evaluations could be performed in 

parallel to reduce the execution time. 
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