
Efficient Propagation of Light Field Edits

Adrian Jarabo, Belen Masia and Diego Gutierrez

Universidad de Zaragoza

ABSTRACT

Light field editing is a complex task, due to the large amount of data and the need to keep consistency between
views. This has hampered the creation of efficient edit propagation methods, similar to those existing for single images.
We propose a framework to edit light fields at interactive rates, by propagating some sparse user edits in the full light
field. This propagation is guided by a novel affinity function, which forces similar pixels (defined by our affinity space)
to receive similar edits, thus ensuring consistency. To manage the light field’s large amount of data, we propose a novel
multi-dimensional downsampling technique: we first cluster pixels with high affinity, and then perform edit propagation
over the downsampled data. We finally upsample back to the original full resolution, maintaining visual fidelity and view
consistency between views.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

1. Introduction

Light fields [LH96, GGSC96] allow photo-realistic render-
ing of real objects and scenes independently of the complex-
ity of its geometry and reflectance. They capture the appear-
ance of objects using photographs, which map the incom-
ing radiance in a four-dimensional parametrization of rays
in free-space. Several works have been published regard-
ing both the acquisition and rendering of light fields, find-
ing good applications in videogames [HC07], augmented
reality [CNR08] or novel computational photography tech-
niques [Ng05, VRA∗07] to refocus or reduce noise. How-
ever, manipulation and edition of light fields has received
very little attention in the existing literature.

Editing the appearance of a light field is challenging be-
cause of some inehrent difficulties. First, preserving the con-
sistency between samples is mandatory to maintain realism.
Additionally, the amount of data to manipulate is usually
very large, since the size of the light fields tends to be very
high in order to provide well-sampled data. Managing such
data sizes can make the editing process very slow, which is
unacceptable if we are aiming to provide an interactive edit-
ing process to the user.

Recently, image editing methods based on sparse strokes-
based edit propagation have allowed the user to perform
complex edits by defining a few coarse strokes, and then
propagating them to the rest of the image. These approaches
are usually guided by the principle that similar pixels should
receive similar edits. We base our novel efficient edit light
field propagation technique on an extension of one of those
methods, namely AppProp [AP08]. Our light field editing
framework succeeds in solving the difficulties stated before:

it provides a solution which maintains the coherence be-
tween the samples in the light field, by taking advantage of
the fact that coherent elements in the light field should re-
ceive similar edits, as far as they have similar appearance;
and it is done very efficiently, giving user feedback in inter-
active times, by downsampling the light field data such that
similar and close pixels are clustered together.

In order to make this possible, we propose in this work the
following contributions:

• A new similarity metric, adapted to the context of light
field editing, which is defined to model the affinity be-
tween pixels, to guide the edit propagation process.

• A novel, multidimensional downsampling-upsampling al-
gorithm, based on the affinity between elements in a light
field, to provide fast and accurate affinity-based edit prop-
agation.

• A framework for efficient light field editing, based on
recent sparse strokes-based edit propagation methods,
which allows interactive light field editing for the first
time.

2. Related work

Few works have been developed in the context of efficient
light field editing and manipulation. One of the first ap-
proaches is the plenoptic image editing work [SK02], which
propagates edits from one sample to others by using a voxel-
representation of the light field. This system allows the user
to perform 2D edits as painting or scissoring, which are then
propagated to the other images using as guide a voxel-based
representation. However, the method has some limitations:

it assumes lambertian surfaces to perform the voxel recon-
struction, and it does not support sparse strokes-based edit
propagation.

Zhang et al. [ZWGS02] morph between two input light
fields, by requiring the user to define equivalent zones in
both input light fields. A second approach [COSL05] allows
the user to interactively deform an object represented by a
light field. Both methods perform deformation by using a
warping operator, which is included in Lightshop’s opera-
tions set [HC07]. Those methods perform deformation in
light fields, while our method is designed to interactively
change their appearance.

Several techniques for efficient propagation of sparse
edits in an image have been recently proposed, span-
ning a number of different applications. These include im-
age colorization [LLW04] or tone adjustment [LFUS06].
Also, sparse edits propagation methods have been general-
ized to any application where parameters should be propa-
gated [PL07,AP08,XLJ∗09,XYf10]. Those methods shared
a common approach, defining similarity metrics between
pixels, can be further accelerated by performing the prop-
agation with a downsampled version of the data and then
upsampling the solution [KCLU07].

Finally, other authors have introduced structured data
editing which is also related to our problem. Bidirectional
Texture Functions (BTFs) [DvGNK99] is another structured
image-based data used to represent real-world captured ap-
pearance. From all the works appeared aiming to edit this
data, the approach of Xu et al. [XWT∗09] propagates sparse
edits in the full data set, as our method does. However, they
use additional information present in the BTFs to formulate
the affinity metric, and they have to use an out-of-core propa-
gation implementation when editing large BTFs. In contrast,
our method works only with appearance and spatial informa-
tion, and it’s designed to perform edit propagation in core, as
it’s based on smartly downsampling the light field.

3. Edit propagation

Coarse stroke-based edit propagation [LFUS06,PL07,AP08,
XLJ∗09] allows fast editing in images by asking the user
to input just a few sparse strokes, and propagating them to
the rest of the image. This propagation is usually performed
keeping in mind two principles: first, pixels covered by one
stroke should keep the appearance given by the user as much
as possible. And second, near pixels with similar appearance
should receive similar edits. To account for these two princi-
ples, it is necessary to define a mathematical formulation of
the propagation, where the final propagated edits in a pixel
depends on the explicit edit performed over that pixel, and
also in the edits performed over pixels with similar appear-
ance.

The recent work by An and Pellacini, AppProp [AP08],
allows an efficient editing of complex spatially-varying
datasets, while being able to propagate sparse edits over dis-
continuous regions. It would in principle be a good candidate
for light field editing as well, but as we will see, it presents
several hard limitations. The key of the AppProp approach
is the imposition that close-by pixels with similar appear-
ance have similar edits. This allows imprecise user strokes
to be correctly propagated over the full data. Initially, the

user does some strokes gi with strength wi ∈ [0,1] in some
parts of the image, and these initial edits are propagated to
the rest of the image, yielding the final edits that will be per-
formed, ei. These final edits ei are obtained by minimizing
the following energy function:

∑
i, j

w jzi j(ei−g j)
2 +λ∑

i, j
zi j(ei− e j)

2 (1)

where zi j is the affinity between samples i and j, and λ is
the variable that controls the relative contribution between
both terms of the summation. The first term imposes the con-
straint specified by the user strokes, while the second one
ensures that pixels with high affinity are similarly edited.

The affinity metric zi j between two pixels i, j models their
similarity considering both appearance and the spatial dis-
tance between them. It is defined as:

zi j = exp(−
‖ci− c j‖2

σa
)exp(−

‖xi−x j‖2

σs
) (2)

where ci and xi are appearance and spatial location vectors
of pixel i, and σa and σs are the propagation controllers that
model how much each feature affects the propagation.

Given that the energy function from Equation 1 is
quadratic, it can be minimized solving a linear system with
n variables (the affinity matrix is of size n×n, where n is the
size of the data). The system is efficiently solved by using an
stochastic column sampling approach, in which the affinity
matrix, being close to low rank, is approximated by m lin-
early independent columns (m << n). This leads to a time
and space complexity of O(m2n) and O(mn) respectively,
where m is the number of columns randomly sampled. So
even though the linear system can be solved very efficiently,
its complexity is still linear with the data size. This is an im-
portant limitation when working with large elements, such
as 4D light fields, which renders the method impractical: not
only can user edits take a very long time to propagate, but the
data may not even fit in memory. Our technique, which we
describe in the following section, is designed to overcome
these problems.

4. Overview of our method

As we have seen, AppProp [AP08] allows the user to per-
form complex edits by automatically propagating sparse and
imprecise user strokes. Although it yields impressive results
in images, we deal in this work with light fields, more com-
plex both in terms of structure and size. Light fields are enor-
mous quantities of data which capture all the light rays (up to
a sampling rate) within a scene. To do this, a ray is typically
represented by the intersection of it with two planes, namely
the plane of the camera (uv plane) and the focal plane (st
plane) [LH96]. These characteristics (the large data size and
the four-dimensional parametrization) are what makes the
use of AppProp as is impractical for editing light fields. We
outline here the two main problems, together with the pro-
posed solution.

First, the propagation and the affinity metric are defined
to work on a two-dimensional spatial domain, while the light
field space is defined by four dimensions. Therefore, it is
necessary to define a new affinity metric adapted to the four-
dimensional spatial domain of the light field.

The second consideration to take into account is related

Calculate
Affinity Matrix

Affinity-based
light field

downsampling

Get downsampled
neighborhoods

Downsampled
light field

Downsampled
neighborhoods

Affinity Matrix
Z

Figure 1: An overview of our proposed preprocessing. From the initial light field data, we get the downsampled elements. Those
downsampled elements are then used to precalculate the affinity matrix Z, that later will be used in the propagation process.
Also, the neighborhood of each downsampled element is got, to allow fast upsampling when editing.

Map edits
from 3D to

light field space

Downsample
edits

Propagate
edits

Upsample
solution

Downsampled
edits

Low
resolution
propagated

edits

Figure 2: Our interactive editing pipeline: Over the 3D representation of the light field, the user can draw sparse strokes. To
propagate them, edits have to be first mapped from screen space to the light field, and then downsampled. Once downsampled,
they are propagated in the downsampled domain. Finally, the solution is upsampled.

with the efficiency of the method, whose complexity is lin-
ear with the size of the data. To overcome this, we devise the
working strategy of performing the propagation in a down-
sampled version of the data and then upsampling the edits to
the full resolution data. However, the downsampling process
is not straightforward, because the edit propagation process
is guided by an affinity function which usually accounts both
for appearance similarity and spatial proximity. As a con-
sequence, a straightforward downsampling in the spatial 2D
domain would be problematic, since pixels close in 2D space
could be clustered together in the low resolution version de-
spite possibly having great dissimilarity; and subsequently
pixels which should not receive similar edits would in fact
do. We therefore downsample not only in the spatial domain,
but also accounting for other features, ensuring that similar
(in a multi-dimensional way) pixels will receive similar ed-
its. This implies downsampling the data considering all the
dimensions of the affinity metric used when propagating ed-
its. To do this, we follow an approach similar to the work of
Xu et al. [XLJ∗09], mapping all pixels to an affinity space
defined by the dimensions of the affinity metric and then
performing the downsampling in that space. Upsampling the
propagated edits back to full resolution is not trivial either,
as the next section explains.

Based on our new metric and downsampling-upsampling
strategy, we have developed a framework to efficiently edit
light fields, providing the user rapid feedback, and which can
propagate sparse strokes done by the user over the full light
field. We divide our pipeline in two steps, explained below.

Preprocessing step. During this step (depicted in Figure 1),
we downsample the light field, and then create the affinity
matrix with the downsampled data. Additionally, we precal-
culate the neighborhood of each downsampled pixel, since it
will be used during the editing process.

Interactive editing step. The user first draws some sparse
edits over a 3D representation of the light field. Once the
edits are mapped from screen space to the four dimensional
light field space, they are downsampled. Those downsam-
pled edits feed the propagation process, returning a down-
sampled version of the solution. Finally, the low resolution
propagated edits are upsampled and applied over the full
light field. Figure 2 shows the complete pipeline of this step.

5. Efficient light field edit propagation

Having explained the method as a whole in the previous sec-
tion, we offer here a detailed explanation of those steps of
the pipeline which were specifically devised to adapt An and
Pellacini’s approach to work with light fields and thus are
significantly different from the AppProp scheme.

5.1. Definition of a new affinity metric

The affinity metric defined by Equation 2 could be used to
guide the propagation in light fields by considering the light
field as a large 2D image formed by all the different tiles
or slabs. However, using this metric would lead to incor-
rect propagation because the distance between points (sec-
ond term in Equation 2) can not be correctly calculated for
a light field if it is parametrized in 2D. This is illustrated
in Figure 3. For two points which are neighbors in a light
field, using 2D spatial coordinates yields a distance between
them equal to the size of a tile (sizetile), whereas for a 4D
parametrization the distance between them is indeed 1 (in
arbitrary distance units). Thus, instead of using the spatial
term from Equation 2, we substitute it with two new terms
to model the full 4D light field space (i.e. st and uv planes),
which leads to our new affinity metric:

zi j = exp(−
‖ci− c j‖2

σa
−
‖sti− st j‖2

σst
−
‖uvi−uv j‖2

σuv
) (3)

where ci = (ri,gi,bi) are the appearance values of pixel i.
Instead of, or as well as, RGB tuples, other measures of ap-
pearance could be used. For the present implementation we
have chosen RGB values because they perform well and are
the simplest to obtain. Vectors sti = (si, ti) and uvi = (ui,vi)
contain the spatial coordinates in the 4D light field space.
Finally, σa, σst and σuv control how much each feature (ap-
pearance and spatial distance in each light field plane) affects
the measure of similarity, and subsequently, the propagation
of the edits. It is important to note that all features are nor-
malized to the resolution of each dimension.

x

y

i(x, y) j(x+sizetile,y)

u

v

i(u,v,s,t) j(u+1,v,s,t)
s

t

Figure 3: Using 2D (left) vs. 4D (right) coordinates when
building the affinity matrix. If 2D coordinates were used, the
spatial distance between points i and j would be sizetile,
leading to incorrect propagation. Using 4D coordinates the
distance equals 1, which is correct since both points are
neighbors in the light field space.

5.2. Building the affinity space

The affinity metric defined in Equation 3 can be expressed
as:

zi j = exp(−‖fi− f j‖2) (4)

where fi = (ci√
σa
, sti√

σst
, uvi√

σuv
) is the seven-dimensional vec-

tor that stores the appearance values and the 4D light field
coordinates of pixel i; all of them scaled by the reciprocal of
the square root of their associated σ values. Those features
can be understood as the coordinates of the pixel in a seven-
dimensional space, where each dimension d is in the range
[0,σd

−1].

Following Xu et al. [XLJ∗09], we call our seven-
dimensional space the affinity space and, since Equation 3
decreases with the squared difference between pixels’ fea-
tures, it is trivial to note that the closer the pixels are in affin-
ity space, the bigger their similarity is.

5.3. Downsampling the light field

Downsampling data may be understood as a type of clus-
tering of the elements from the original data, where the el-
ements inside a cluster C are represented by one represen-
tative element, which we will call j̃. The ideal downsam-
pled light field would minimize the differences between each
pixel i in the original light field and the representative of
the cluster, j̃. In our context, minimizing the differences is
equivalent to having the highest affinity.

Following the observation that pixels close in affinity
space have big similarity, minimizing the difference between
pixel i and its representative j̃ is performed by clustering

groups of pixels in our seven-dimensional affinity space, and
then getting a single representative for the cluster.

Thus, to find the downsampled clusters in the light field,
we first map all pixels into affinity space. Then, we down-
sample the elements in a top-down approach, by recursively
subdividing the space into clusters. It is actually very similar
to how a BVH (bounding volume hierarchy) is constructed,
but without keeping the hierarchical structure, as we are just
interested in the final clusters. The algorithm stops when it
reaches a cluster with the defined number of pixels. This top-
down approach has been chosen because of its simplicity and
speed, and also because it guarantees that all clusters repre-
sent the same number of pixels. Once the cluster is obtained,
the representative is calculated by averaging the features of
the elements in the cluster.

5.4. Downsampling the user strokes

Despite propagating the edits on downsampled data, user
strokes are done over the full-resolution light field. It is then
mandatory to downsample those strokes, in order to get a
suitable input to perform the propagation in the low resolu-
tion data.

From the original strokes gi done by the user and their
associated strengths wi (following the notation explained in
Section 3), we calculate the downsampled w̃ j̃ and g̃ j̃ as:

w̃ j̃ =
1
kp

∑
i∈C

wi ∗ zi j̃ (5)

g̃ j̃ =
1
kp

∑
i∈C

gi ∗ zi j̃ (6)

where C is a cluster of pixels in the original light field, j̃ is
the representative of that cluster, and zi j̃ the similarity be-
tween j̃ and each pixel i in C. kp = ∑(zi j̃) is introduced to
ensure energy conservation.

5.5. Upsampling the propagated edits

Once edit propagation has finished, a low resolution result
Ẽ is obtained. Then, a full resolution propagated E version
has to be obtained from the downsampled Ẽ. A very simple
approach to get the upsampled value in pixel i would be just
Ei = Ẽ j̃ , being j̃ the downsampled representative of i.

This approach, however, does not take into account the
fact that one pixel assigned to one cluster can also have big
similarity with other cluster representatives. To solve this
problem, we take advantage of the available full resolution
data, which can be used to guide the upsampling process,
similar to Joint Bilateral Upsampling [KCLU07]. When cal-
culating the upsampled solution Ei in pixel i, we account not
only for the contribution of its representative j̃, but also for
the contribution of the neighborhood of j̃, weighted by its
similarity with i. This similarity can be calculated because
we still have the original high resolution light field. So, the
upsampled solution E is calculated as:

Ei =
1
kp

∑
ñ∈neig(j̃)

Ẽñ ∗ ziñ (7)

where ziñ is the similarity between pixel i and ñ, and kp is
the normalizing term, kp = ∑(ziñ).

To obtain the neighborhood of each representative j̃, as
they are no longer in a uniform grid, we cannot query an
array to perform the search. Instead, we search the k near-
est neighbors in a kd-tree, imposing also a maximum radius
defined by a minimum affinity threshold. For efficiency rea-
sons, this search is done in preprocess step, storing, for each
representative j̃, the indices of its neighbors.

6. Results

We have tested our framework for editing light fields on
the Old Stanford Light Fields Archive [Sta], where we have
performed some color edits interactively. Color edit prop-
agations have been chosen because they show how multi-
ple parameters edits can be easily performed at the same
time, although any other edits based in propagating param-
eters would be also possible (e.g. exposure, contrast, satu-
ration, color temperature). Two examples of the edits done
are shown in Figure 6, where the dragon and the buddha
light fields have been edited. The propagation of those edits,
performed on a PC with an Intel Core2 P8700 (2.53GHz, 2
cores) and 2GB memory, took roughly 0.50 seconds, with
the resolution of both light fields being (32 · 256)2 pixels,
and downsampled by a factor of 322.

Figure 4: Similarity between pixels and their downsampled
representatives when downsampling by a rate of 22 (left) and
642 (right). The whiter the image is, the more affine with
their downsampled versions pixels are.

As the downsampling rate augments, propagation times
logically decrease, since the number of elements to be han-
dled by the algorithm is reduced. This reduction is linear
with the downsampling rate. However, the higher the down-
sampling rate is, the greater the error produced by the ap-
proximation. This is because when the size of a cluster aug-
ments, due to higher downsampling rates, the pixels inside
the cluster are further in affinity space, and thus their simi-
larity with the representative is lower. An example of this is
shown in Figure 4, which depicts, for two different down-
sampling ratios, the similarity between each pixel and its
representative (the whiter, the more similar). With a low
downsampling ratio (22 for the left image) the similarity is
quite high, while the right image (downsampling ratio 642)
exhibits much darker areas, indicating significative differ-
ences between each pixel and its assigned representative.

To validate that high differences between downsampled
representatives and high resolution images do not affect the
result from a purely visual perspective, we compare the edits
between a downsampled propagated image and an original
one. To perform the comparison, we use a reduced version of

a light field with size (2 ·256)2, in order to have the high res-
olution propagation process fit in memory. The results even
with a high downsampling rate are, as shown in Figure 5
visually correct, although some minor errors appear.

Figure 5: Left: 3D view of a light field with the sparse edits
performed by the user. Middle: Result of propagating the ed-
its on the original (without downsampling) light field of size
(2 · 256)2. Right: Result when the edits are propagated on
a downsampled version of the light field, the downsampling
ratio being 322.

The method has, however, some limitations. The most im-
portant one is that the complexity of the method is still linear
with the light field size: time complexity is O(m2n/ratio)
and space complexity O(mn/ratio), n being the data size,
m the randomly sampled columns for the low-rank approx-
imation, and ratio the downsampling ratio. Thus, with very
large light fields, the time will still grow linearly, unless the
downsampling ratio is increased. Also, in terms of memory
requirements, in addition to the clusters storage it is neces-
sary to keep the correspondence between pixels with their
clusters.

7. Conclusions and future work

We have proposed an efficient method for editing light fields,
based on a sparse edit propagation scheme. Our framework
allows the user to perform coarse sparse editions over a 3D
representation of the light field, and then propagate them
over the full-resolution data, guiding the propagation by the
similarity between the pixels. Our method allows efficient
calculations, even in very large light fields, by downsam-
pling them in our affinity space, in a way that pixels with
high affinity are downsampled together. Propagation is then
performed over the downsampled data, and the result ob-
tained is upsampled to yield the final solution.

Currently our method performs downsampling by recur-
sively subdividing the pixels in clusters. In the future we
would like to explore other techniques to downsample the
data. Adding new edit operations to our framework would
be also interesting, since the current implementation only
supports color modifications. Nevertheless, we believe our
approach can become a useful tool in the somewhat unex-
plored area of light field editing, where the sheer size of the
data renders existing edit propagation methods impractical.

8. Acknowledgements

We would like to thank the reviewers for their insight-
ful comments. Many thanks also to the Stanford Univer-
sity Computer Graphics Laboratory for making their Light
Field Archives publicly available. This research has been

Figure 6: Strokes drawn over the 3D view of the light field (left), and the resulting propagated edits in different views for the
dragon (top row) and buddha light fields (bottom row). Please note that the low resolution of the buddha light field is inherent
to the original light field and not related to the downsampling-upsampling process.

funded by a Marie Curie grant from the Seventh Frame-
work Programme (grant agreement no.: 251415), the Span-
ish Ministry of Science and Technology (TIN2010-21543)
and the Gobierno de Aragón (projects OTRI 2009/0411 and
CTPP05/09). Belen Masia is supported by a FPU grant from
the Spanish Ministry of Education.

References
[AP08] AN X., PELLACINI F.: Appprop: all-pairs appearance-

space edit propagation. ACM Trans. Graph. 27 (August 2008),
40:1–40:9. 1, 2

[CNR08] COSSAIRT O., NAYAR S., RAMAMOORTHI R.: Light
field transfer: global illumination between real and synthetic ob-
jects. In ACM SIGGRAPH 2008 papers (New York, NY, USA,
2008), SIGGRAPH ’08, ACM, pp. 57:1–57:6. 1

[COSL05] CHEN B., OFEK E., SHUM H.-Y., LEVOY M.: In-
teractive deformation of light fields. In Proceedings of the 2005
symposium on Interactive 3D graphics and games (New York,
NY, USA, 2005), I3D ’05, ACM, pp. 139–146. 2

[DvGNK99] DANA K. J., VAN GINNEKEN B., NAYAR S. K.,
KOENDERINK J. J.: Reflectance and texture of real-world sur-
faces. ACM Trans. Graph. 18 (January 1999), 1–34. 2

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., CO-
HEN M. F.: The lumigraph. In Proc. of the 23rd annual con-
ference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 43–54. 1

[HC07] HORN D. R., CHEN B.: Lightshop: interactive light field
manipulation and rendering. In Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games (New York, NY,
USA, 2007), I3D ’07, ACM, pp. 121–128. 1, 2

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTEN-
DAELE M.: Joint bilateral upsampling. ACM Trans. Graph. 26
(July 2007). 2, 4

[LFUS06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. ACM

Trans. Graph. 25 (July 2006), 646–653. 2

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 1996), SIG-
GRAPH ’96, ACM, pp. 31–42. 1, 2

[LLW04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization
using optimization. ACM Trans. Graph. 23 (August 2004), 689–
694. 2

[Ng05] NG R.: Fourier slice photography. ACM Trans. Graph. 24
(July 2005), 735–744. 1

[PL07] PELLACINI F., LAWRENCE J.: Appwand: editing mea-
sured materials using appearance-driven optimization. ACM
Trans. Graph. 26 (July 2007). 2

[SK02] SEITZ S., KUTULAKOS K.: Plenoptic image editing.
Intnl. Journal of Computer Vision 48, 2 (2002), 115–129. 1

[Sta] The (Old) Stanford Light Fields Archive.
http://www-graphics.stanford.edu/software/
lightpack/lifs.html. [Online, accessed 22-March-
2011]. 5

[VRA∗07] VEERARAGHAVAN A., RASKAR R., AGRAWAL A.,
MOHAN A., TUMBLIN J.: Dappled photography: mask en-
hanced cameras for heterodyned light fields and coded aperture
refocusing. ACM Trans. Graph. 26 (July 2007). 1

[XLJ∗09] XU K., LI Y., JU T., HU S.-M., LIU T.-Q.: Effi-
cient affinity-based edit propagation using k-d tree. ACM Trans.
Graph. 28 (December 2009), 118:1–118:6. 2, 3, 4

[XWT∗09] XU K., WANG J., TONG X., HU S.-M., GUO B.:
Edit propagation on bidirectional texture functions. Computer
Graphics Forum 28, 7 (2009), 1871–1877. 2

[XYf10] XIAO C., YONGWEI N., FENG T.: Efficient edit prop-
agation using hierarchical data structure. IEEE Transactions on
Visualization and Computer Graphics 99, PrePrints (2010). 2

[ZWGS02] ZHANG Z., WANG L., GUO B., SHUM H.-Y.:
Feature-based light field morphing. ACM Trans. Graph. 21 (July
2002), 457–464. 2

http://www-graphics.stanford.edu/software/lightpack/lifs.html
http://www-graphics.stanford.edu/software/lightpack/lifs.html

