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Abstract
The fieldof computational photography, and in particular the design and implementation of coded apertures, has
yielded impressive results in the last years. In this paper we introduce perceptually-optimized coded apertures
for defocused deblurring. We obtain near-optimal apertures by means of optimization, with a novel evaluation
function that includes two existing image quality perceptual metrics. These metrics favor results where errors in
the final deblurred images will not be perceived by a human observer. Our work improves the results obtained with
a similar approach that only takes into account the L2 metric in the evaluation function.

Categories and Subject Descriptors(according toACM CCS): I.4.3 [ImageProcessing and Computer Vision]:
Enhancement—Sharpening and deblurring

1. Intr oduction

In the past few years, the field of computational photogra-
phy has yielded spectacular advances in the imaging process.
One strategy is to code the light information in novel ways
before it reaches the sensor, in order to decode it later and
obtain an enhanced or extended representation of the scene
being captured. This can be accomplished for instance by
using structured lighting, new optical devices or modulated
apertures or shutters. In this work we focus oncoded aper-
tures. These are masks obtained by means of computational
algorithms which, placed at the camera lens, encode the de-
focus blur in order to better preserve high frequencies in the
original image. They can be seen as an array of multiple
ideal pinhole apertures (with infinite depth and no chromatic
aberration), whose location on the 2D mask is determined
computationally. Decoding the overlap of all pinhole images
yields the final image.

Some existing works interpret the resulting coded blur at-
tempting to recoverdepth from defocus. Given the nature of
the blur as explained by simple geometrical optics, this ap-
proach imposes a multi-layered representation of the scene
being depicted. While there is plenty of interesting on-going
research in that direction, in this paper we limit ourselves to
the problem ofdefocus deblurring: we aim to obtain good
coded apertures that allow us to recover a sharp image from
its blurred original version. We follow standard approaches

and pose the imaging process as a convolution between the
original scene being captured and the blur kernel (plus a
noise function). In principle, this would lead to a blind de-
convolution problem, given that the such blur kernel is usu-
ally not known. Assuming no motion blur nor camera shake,
this kernel is reduced to the point spread function of the op-
tical system. Traditional circular apertures, however, have a
very poor response in the frequency domain: not only do
they lose energy at high frequencies, but they exhibit mul-
tiple zero-crossings as well; it is thus impossible to recover
information at such frequencies during deconvolution.

Inspired by previous works [ZN09], we rely on the aver-
age power spectra of natural images to guide an optimiza-
tion problem, solved by means of genetic algorithms. Our
main contribution is the use of two existing image quality
perceptual metrics during the computation of the apertures;
this leads to a new evaluation function that minimizes errors
in the deconvolved images that are predicted to be perceived
by a human observer. Our results show better performance
compared to similar approaches that only make use of the L2
metric in the evaluation function. Additionally, we explore
the possibility of computing non-binary masks, and find a
trade-off between ringing artifacts and sharpness in the de-
convolved images. Our work demonstrates a novel example
of applying perceptual metrics in different contexts; as these
perceptual metrics evolve and become more sophisticated,
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some existing algorithms may be revisited and benefit from
them.

2. Previous Work

Coded apertures have been traditionally used in astronomy,
coding the direction of incoming rays as an alternative to
focusing imaging techniques which rely on lenses [ItZ92].
Possibly the most popular patterns were the MURA pat-
terns (Modified Uniformly Redundant Array) [GF89]. In
the more recent field of computational photography, Veer-
araghavan et al. [VRA∗07] showed how a 4D light field can
be reconstructed from 2D sensor information by means of
a coded mask. Placed at the lens, the authors achieve refo-
cusing of images at full resolution, provided the scene being
captured contains only Lambertian objects. Nayar and Mit-
sunaga [NM00], extended the dynamic range capabilities of
an imaging system by placing a mask of spatially varying
transmittance next to the sensor, and then mapping the cap-
tured information to high dynamic range.

Other works have proposed different coded apertures for
defocus deblurring or depth approximation. To restore a
blurred image, the apertures are designed to have a broad-
band frequency response, along with none (or distinguish-
able) zero-crossings in the Fourier domain. Hiura and Mat-
suyama [HM98] proposed a four-pinhole coded aperture to
approximate the depth of the scene, along with a deblurred
version of it, although their system required multiple images.
Liang et al. [LLW∗08] use a similar approach, combining
tens of images captured with Hadamard-based coded pat-
terns. Levin et al. [LFDF07] attempted to achieve all-focus
and depth recovery simultaneously, relying on image statis-
tics to design an optimal aperture and for the subsequent
deconvolution. Depth recovery is limited to a multi-layered
representation of the scene. Last, the idea of encoding the
information before it reached the sensor has not only been
limited to the spatial domain but also transferred to the tem-
poral domain by applying a coded exposure aimed at motion
deblurring [RAT06].

Another approach to recovering both a depth map of the
scene and in-focus images was that of Zhou et al. [ZLN09],
in this case obtaining a pair of coded apertures using both
genetic algorithms and gradient descent search. The same
year, a framework for evaluating coded apertures was pre-
sented, based on the quality of the resulting deblurred im-
age and taking into account natural image statistics [ZN09].
Near-optimal apertures are obtained by means of a genetic
algorithm. Recently, Masia and colleagues offered initial in-
sights on non-binary apertures following the same approach
[MCPG11], and analyzed the obtained apertures along the
size, depth and shape dimensions. This paper represents a
continuation of that work, which we extend by introducing
two existing perceptual metrics in the optimization process
leading to an aperture design, and further analyzing the po-
tential benefits of non-binary masks.

3. The Imaging Process

Image blur due to defocus is caused by the loss of high fre-
quency content when capturing the image. The capture pro-
cess can be modeled as a convolution between the scene be-
ing captured and the point spread function (PSF) of the cam-
era, plus some noise:

f = kd ∗ f0 +η (1)

where f0 represents thereal scene being photographed,f
is the captured image,kd is the PSF andη accounts for
the noise introduced in the imaging process. Subscriptd ac-
counts for the dependency of the PSF with the defocus depth
d (distance of the scene to the in-focus plane). Additionally,
the PSF varies spatially across the image and depends on the
absolute position of the in-focus plane as well. We will as-
sume that the noise follows a Gaussian distribution of zero
mean and a standard deviation denoted byσ, N(0,σ2). By
means ofdeconvolution, an approximation̂f0 of theoriginal
sharp image can be obtained.

As Figure1 shows, the PSF is also characterized by the
pattern and size of the aperture. Since, as mentioned, blur is
caused by the loss of information at certain frequencies, the
response of an aperture is better analyzed in the frequency
domain, where Equation1 can be written as:

F = Kd ∙F0 +ζ (2)

Figure 2 showstwo plots of the power spectra of differ-
ent apertures: the traditional circular pattern, an optimal
aperture from related previous work [ZN09], and three of
the perceptually-optimized apertures presented in this paper.
Note that the y-axis, showing the square of the amplitude of
the response for different frequencies, is log-scale. Circular
apertures exhibit zero crossings at several frequencies, and
thus information at those frequencies is lost during the imag-
ing process and cannot be recovered. Optimal apertures for
deblurring therefore seek a smooth power spectrum, while
keeping the transmitted energy as high as possible.

Figure 1: Left: DisassembledCanon EOS 50mm f/1.8 used
in our tests.Middle: Point spread function for different aper-
tures and degrees of defocus (from top to bottom:circular
aperture, focused; circular aperture, defocus depth = 90cm;
and one of our coded apertures, defocus depth = 80cm).
Right:The lens with one of our coded apertures inserted.
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Figure 2: Power spectra of different apertures. Spectra for
a conventional circular aperture and for an aperture specif-
ically designed for defocus deblurring [ZN09] are shown
in black and gray, respectively. Blue, red and green curves
show the spectra of some of our perceptually-optimized
apertures (please refer to the text for details).

4. Perceptual Quality Metrics

Devising an aperture pattern whose frequency response is
optimal can be done in different manners. In this paper we
build on the approach of Zhou and Nayar [ZN09]; in their
work, the authors define their quality metric, i.e. the objec-
tive function, as the expectation of theL2 distance between
the deconvolved imagêF0 and theground truth imageF0
with respectto ζ.

However, objective metrics working at pixel level (such
as the L2 norm) are not necessarily correlated with human
perception: images with completely different per-pixel in-
formation may share a visual quality that will be easily iden-
tified by humans [Ade08]. Inspired by this observation, we
introduce two additional perceptually-based metrics to guide
the design of the apertures, by minimizing errors in the de-
convolved images that are predicted to be perceived by a
human observer. Furthermore, we include a more reliable
prior based on the statistics of a large number of natural
images from a recently published database [PCR10]. The
perceptual metrics that we use are SSIM (Structural Simi-
larity) [WBSS04] and the recent HDR-VDP-2 [MKRH11],
which we briefly describe in the following subsections.

SSIM. The Structural Similarity Index Measure (SSIM) was
introduced by Wang et al. [WBSS04], to compute the sim-
ilarity between two images. It is based on a measure of
structural similarity between corresponding local windows
in both images. It assumes that the human visual system is
very well adapted to extract structural information from a
scene, and therefore evaluates the similarity between a dis-
torted image and a reference image based on the degradation
of such structural information.

Assumingx andy to be non-negative image signals, be-
longing to the two images to be compared, SSIM compares
luminancel(x,y), contrastc(x,y),and the structures(x,y)
between the images. The latter,s(x,y), is termed structural
similarity and defined as the correlation between the two im-

age signals after normalization. The three components are
multiplied to obtain the final similarity measure (please re-
fer to the original publication for details):

SSIM=
(2μxμy +A1)(2υxy+A2)

(μ2
x +μ2

y +A1)(σ2
x +σ2

y +A2)
(3)

whereμ represents meanluminance, andσ is the stan-
dard deviation, used as an estimate of the image contrast.υ
is the correlation coefficient between the images, obtained
as the inner product of the unit vectors(x− μx)/σx and
(y− μy)/σy. In our case, the local window to compute the
needed statistics has been set to a 8× 8 pixels square win-
dow weighted by a rotationally symmetric Gaussian function
with a standard deviationσ = 1.5. The constantsAi avoidin-
stabilities when either(μ2

x +μ2
y) or (σ2

x + σ2
y) are very close

to zero; we set their values toA1 = (B1L)2 andA2 = (B2L)2

whereL is thedynamic range of the pixel values (255 for
8-bit grayscale images),B1 = 0.01, andB2 = 0.03.

HDR-VDP-2. HDR-VDP-2 is a very recent metric that
uses a fairly advanced model of human perception to pre-
dict both visibility of artifacts and overall quality in im-
ages [MKRH11]. The visual model used is based on ex-
isting experimental data, and accounts for all visible lumi-
nance conditions. The results of this metric show a signif-
icant improvement over its predecessor, HDR-VDP. This
metric makes use of a detailed model of the optical and reti-
nal pathway (including intra-ocular light scatter, photorecep-
tor spectral sensitivities and luminance masking) and takes
into account contrast sensitivity for a wide range of lumi-
nances, as well as inter- and intra-channel contrast masking.
We again refer the reader to the original publication for the
details.

HDR-VDP-2 can yield different outputs: an estimation of
the probability of detecting differences between the two im-
ages compared, or an estimation of the quality of the test im-
age with respect to the reference image. In this work we have
used the latter, a prediction of the quality degradation with
respect to the reference image, expressed as amean-opinion-
score(from 0 to 100). We set thecolor encodingparameter
of the metric toluma-displayin order to work with the lumi-
nance channel of LDR images; thepixels-per-degreeparam-
eter, related to the viewing distance and the spatial resolution
of the image, is set to a standard value of 30.

5. Perceptually-Optimized Apertures

The Fourier transform of the recovered imageF̂0 can beob-
tained using Wiener deconvolution as follows [ZN09]:

F̂0 =
F ∙ K̄

|K|2 + |C|2
(4)

whereK̄ is thecomplex conjugate ofK, and|K|2 = K ∙ K̄.

|C|2 = C ∙ C̄ is the matrix of noise-to-signal power ratios
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(NSR) of the additive noise. We precompute this matrix as
|C|2 = σ2/S, whereS is the estimated power spectra of a
natural image andσ2 is thenoise variance. To estimateS, we
rely on recent work on statistics of natural images by Pouli et
al. [PCR10], and select from their database 180 images from
an extensive collection of two different categories: half of
the images belong to themanmade-outdoorscategory, while
the other half belongs to thenaturalcategory. The estimated
power spectra is obtained as the average of the power spectra
over small windows of each of the 180 images and will be
used as our prior in the deconvolution process.

The quality of the recovered imagêf0 with respectto the
real image f0 is measuredusing a combination of theL2
norm, theSSIM index and theHDR-VDP-2score (VDP2).
The aperture quality metricQ is then given by:

Q = λ1(1−L2)+λ2(SSIM)+ λ3(VDP2/100) (5)

For the normalizedL2 norm, 0 represents perfect quality,
while 1 means worst quality. The SSIM index can yield val-
ues in the range [-1, 1], but we observe that for the spe-
cific case of blurred images the structural information does
not change enough for the index to reach negative values.
Therefore, values for theSSIM index range from 0 (worst
quality) to 1 (best quality). The values forVDP2 range
from 0 (worst quality) to 100 (best quality). Last, the vec-
tor Λ = {λ1,λ2,λ3} represents theweights assigned to each
metric (discussed in Subsection5.1).

5.1. Optimization

Our goal is to obtain apertures with the largest possibleQ
value according to our quality metric. Once we have intro-
duced a way of evaluating a certain aperture with Equation
5, an optimization method can be used to obtain the maxi-
mum value ofQ over the space of all possible apertures. This
space is infinite, limited only by physical restrictions (i.e.
apertures with negative values are not realizable in practice
and resolution is limited by the printing process). Resolution
is additionally limited by diffraction effects, which appear as
the size of the pixels in the aperture gets smaller, and hin-
der its performance. In our case, we fix the resolution of the
apertures to 11×11.

Transmissivity is an additional issue to be taken into ac-
count when designing an aperture. Coded apertures typi-
cally have lower transmission rates than their circular coun-
terparts, and the use of a longer exposure time to obtain
an equivalent brightness to that of the circular aperture can
cause other problems such as motion blur. We fix the trans-
mission rate in our apertures to 0.578. We have chosen this
value empirically since it yields adequate exposure times,
while being similar to other coded apertures proposed for
defocused deblurring.

In order to search for the best aperture pattern we

Figure 3: Left: Imagepattern, after [JSK08], used in the
evaluation function of the genetic algorithm.Right: Wide
bandwidth power spectra of the selected pattern.

have implemented a genetic algorithm (similar to [ZN09,
MCPG11]), which uses our novel quality metric as evalua-
tion function (i.e. objective function). The algorithm has the
following scheme:

• Initialization.An initial population ofN = 1500 apertures
is randomly generated. An aperture is defined by a vector
of P = 121 elements, each element corresponding to an
aperture pixel.

• Selection.We evaluate each aperture by simulating the
capture process, multiplying the Fourier transform of a
sharp imageF0 by the OTF (response of the aperture
in the frequency domain) and adding the Fourier trans-
form of the gaussian noise (Equation2). We then perform
Wiener deconvolution with our prior|C|2 of naturalim-
ages (Equation4). The quality of the recovered image is
measured using our quality metricQ (Equation5), and the
M = 150 apertures with best quality result are selected.
The image used to perform this step, which is 200×200
pixels in size, is similar to the pattern used by Joshi et
al. [JSK08] (see Figure3), since this pattern has a wide
bandwidth spectrum in the frequency domain.

• Reproduction.TheM selected apertures are used to popu-
late the next generation by means of crossover and muta-
tion. Crossover implies randomly selecting two apertures,
duplicating them, and exchanging corresponding bits be-
tween them with probabilityc1 = 0.2, obtainingtwo new
apertures. Mutation ensures diversity by modifying each
bit of the aperture with probabilityc2 = 0.05.

• Termination.Thereproduction and selection steps are re-
peated until the termination condition is met. In our case,
the algorithm stops when the increment in the quality
factor is less than 0.1%, which generally occurs before
G = 80 generations.

The standard deviation of the noise applied in theselec-
tion process is set in principle toσ = 0.005 (we later ex-
plore this parameter in Section6.2). This is based on previ-
ous findings where apertures designed forσ values of 0.001
and 0.005 proved to work best for a wide variety of im-
ages [MCPG11]. Following Equation5, we consider four
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variations ofour evaluation function, characterized by the
weight assigned to each metric:

• Λ = {1,0,0}: just using theL2 norm
• Λ = {0,1,0}: just SSIM
• Λ = {0,0,1}: just HDR-VDP-2
• Λ = {1,1,1}: combiningL2, SSIM, andHDR-VDP-2

We have run the genetic algorithm three times for each
variation of the evaluation function, yielding three execu-
tions to which we will refer asI = {1,2,3}. The top row for
each weight vectorΛ in Figure4 shows the twelve binary
apertures obtained. The other two rows show the results for
non-binary apertures, which will be discussed in Section7.

a) Λ = {1,0,0} b) Λ = {0,1,0}

c) Λ = {0,0,1} d) Λ = {1,1,1}

Figure 4: Apertures obtained for the four variations of the
evaluation function. For each weight vectorΛ, the top row
shows the results of the binary apertures; while second and
third rows show the non-binary type A and non-binary type
B results (see Section7). Columns correspond to the differ-
ent executionsI = {1,2,3}. The apertures which exhibit the
best performance (Section6) are highlighted in red.

6. Performance of the Apertures

In this section, we restrict the analysis of performance to
binary apertures; non-binary apertures will be discussed in
Section7. We simulate the capture process by first convolv-
ing a sharp imagef0 with theaperturekd and addingnoise
η as described by Equation1. To recover the deblurred im-
age f̂0, we performWiener deconvolution using our prior
|C|2 derived from natural images (Equation4). Note that in
practice we work in the frequency domain.

The quality of each recovered image is measured using
the L2 norm, the SSIM index and the HDR-VDP-2 score.

In order to take in account the results of all three metrics
together we calculate theaggregatequality factorQa as:

Qa = (1−L2)+(SSIM)+(VDP2/100) (6)

where larger values ofQa correspond tobetter quality in the
recovered images (Qa ∈ [0,3]).

Figure 5: Some of the images used for evaluating the
obtained apertures. Image licensed under Creative Com-
mons copyright of freemages and flickr users (in reading or-
der) Christophe Eyquem, Stig Nygaard, Paola Farrera and
Juampe Lopez.

We repeat this process using 30 images of different types
of scenes (nature, people, buildings), in order to include a
large and varied enough selection. A few examples of the
images used are shown in Figure5. For each aperture, we
calculate the values for the three different metrics plus the
aggregate quality factorQa for the30 recovered images. We
therefore have, for each type of aperture (binary, type A or
type B) and each weight vectorΛ, a total of 90Qa values. We
denote each of these values asQa(i, j), wherei refers tothe
execution number (I = {1,2,3}) and j to the image number
(J = [1..30])†. In the following we analyze separately the
influence of the perceptual metrics and the noise level in the
performance of the obtained apertures.

6.1. Influence of the Perceptual Metrics

We compute the aggregate quality factor of thebest binary
aperture obtained for eachΛ averaged along the 30 images
Qa(ibest,J) (together withthe corresponding standard devia-
tion); we also compute the mean along the 30 test images of

† Note thatQa values conforma four-dimensional set of data. One
dimension corresponds to the type of aperture (binary, type A, or
type B), another dimension is the weight vectorΛ, and the third and
fourth dimensions are the number of executionsi ∈ I and the number
of test imagesj ∈ J.
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the individual scores of the three metricsL2,SSIMandHDR-
VDP-2. These serve as an indicative of the performance of a
particular aperture. Additionally, we obtain the mean aggre-
gate quality factor of the three executions,Qa(I ,J), together
with its standard deviationσ(Qa(I ,J)). These values will il-
lustrate the appropriateness of including each of the percep-
tual metrics in the evaluation function.

Table1 compiles these results for binary apertures. The
first five columns refer to individual data for the best aper-
ture of the three executions, whereas the last two refer to the
averaged values for that particular evaluation function:

Qa(I ,J) =
1
|I | ∑i

(
1
|J| ∑j

Qa(i, j)

)

, (7)

with |I | = 3 and|J| = 30. It can be seen how the combina-
tion of the three metrics (Λ = {1,1,1}) yields the highestQa

scores, whichtranslates into better apertures for defocus de-
blurring. Although we have limited ourselves in this paper
to equal weights when combining the three metrics, leav-
ing further exploration of other possibilities for future work,
these results clearly suggest the benefits of using perceptual
metrics when deriving the apertures.

6.2. Influence of Noise

The apertures analyzed so far have all been computed assum-
ing an image noise level ofσ = 0.005. We now explore per-
formance of our apertures over a wider range of noise levels,
to ensure that our findings generalize to different image con-
ditions. Figure6 shows L2, SSIM, HDR-VDP-2 andQa for
images capturedand deblurred using our best perceptually-
optimized binary aperture. The images used are the same 30
test images described before, but after synthetically adding
to them noise of increasing standard deviation:σ= 0.0001,
0.0005, 0.001, 0.002, 0.005, 0.008, 0.01 and 0.02. It can
be seen how our optimized patterns perform well across all
noise levels, in contrast to standard circular apertures which
have been proved to be very sensitive to high noise lev-
els [ZN09].

6.3. Comparison with Other Metrics

We now compare the performance of our best binary aper-
ture (marked in red in Figure4) with a conventional circu-
lar aperture and with the best aperture described by Zhou et
al. [ZN09] for a noise level ofσ = 0.005. Note that Zhou’s
aperture has been optimized using only aL2 norm quality
metric.

Figure 7 shows the results for both comparisons (top:
against a circular aperture; bottom: against Zhou’s aperture).
We have used each of the three metrics to compare the qual-
ity of corresponding recovered images. Each dot in the di-
agrams represents the values obtained for a given image in

the 30-image data set used in this paper. Thus, values on the
diagonal would indicate equal performance of the two aper-
tures being compared. For the case of theL2 norm, values
above the diagonal favor our binary aperture (plotted in the
x-axis), whereas for the other two metrics, values below the
diagonal are preferred. It is clear from these data that our
binary aperture consistently outperforms not only the con-
ventional circular aperture, but Zhou’s aperture as well (al-
though obviously by a lesser margin). This translates into re-
covered images of better quality according to all the metrics,
as will be shown in Section8.

7. Non-Binary Apertures

Binary codes have the initial advantage of reducing the
search space, and are usually preferred in the existing liter-
ature. However, there is no principled motivation to restrict
the aperture pixel values to either black or white, other than
apparent simplicity. A notable exception in this regard is the
work by Veeraraghavan and colleagues [VRA∗07], where
the authors report the advantages of continuous-valued aper-
tures, found by gradient descent optimization: reduced com-
putational times and less noise in the recovered (deblurred)
images.

In order to analyze if our perceptual metrics also im-
prove the performance of non-binary apertures, we repeat
our optimization process, but allowing the solutions of the
genetic algorithm to include values between 0 and 1. In or-
der to limit the search space, in practice we restrict the set
of possible values to i) one level of gray (the allowed pixel
values thus being{0,0.5,1}) and ii) three levels of gray
({0,0.25,0.5,0.75,1}). We call the results of both options
non-binary type A and non-binary type B, respectively. The
middle and bottom rows in Figure4 show the apertures ob-
tained for both types (again, we obtain three different aper-
tures for each weight vectorΛ).

We perform the same simulated validation as described
in Section6 for the binary apertures. Our results confirm
that again the combination of the three metrics with equal
weights Λ = {1,1,1} yields apertures with better overall
performance. Table2 summarizes the results. In an analo-
gous manner to the analysis for binary apertures, the first
five columns show data for the best non-binary aperture in
each case, averaged across the 30 test images. The last two
columns show averaged values across the 30 images and the
three executions computed for each evaluation function.

8. Results and Discussion

While in the previous sections we have evaluated the perfor-
mance of the apertures by simulating the capture process, in
this section we test our apertures on a real scenario; we print
and insert the masks into a camera, calibrate the system, and
capture real scenes. We have used a Canon EOS 500D with
a EF 50mm f/1.8 II lens, shown (disassembled) in Figure1.

c© 2012 TheAuthor(s)
Journal compilationc© 2012 The Eurographics Association and Blackwell Publishing Ltd



Binary
L2(ibest,J) SSIM(ibest,J) VDP2(ibest,J) Qa(ibest,J) σ(Qa(ibest,J)) Qa(I ,J) σ(Qa(I ,J))

Λ = {1,0,0} 1.0893 0.8870 68.6038 2.5622 0.1405 2.5564 0.0042
Λ = {0,1,0} 1.1716 0.8994 71.7686 2.6054 0.1164 2.5479 0.0407
Λ = {0,0,1} 1.0359 0.8883 70.9459 2.5874 0.1190 2.5619 0.0183
Λ = {1,1,1} 1.0261 0.8990 74.4169 2.6329 0.1026 2.5921 0.0315

Table 1: Performance evaluation of binary apertures obtained with the different objective functions (i.e. different weight vector
Λ). The first five columns of each table show values of the different metrics and aggregate quality factor for the best binary
apertures of each evaluation function averaged across the 30 test images, plus the standard deviation of the latter. The two
rightmost columns show, for each evaluation function, the mean aggregate quality factor of the three executions and its standard
deviation. Note that the L2 norm is shown as a percentage with respect to the maximum error.

Figure 6: Performance of the best perceptually-optimized binary coded aperture across eight different levels of noise, measured
with the L2, SSIM, HDR-VDP-2 andQa metrics. TheL2 norm shows percentages with respect to the maximum error.

To calibrate the response of the camera (PSF) at different
depths, we used a LED which we made as close as possible
to a point light source with the aid of a pierced thick black
cardboard. We locked the focus at 1,20 m and took an initial
focused image, followed by images of the LED at 20, 40, 60
and 80 cm with respect to the in-focus plane. For each depth,
the actual cropped image of the LED served us as PSF, after
appropriate thresholding of surrounding values which con-
tain residual light, and subsequent normalization for energy
conservation purposes. The resulting PSFs for one of our bi-
nary apertures are shown in Figure8, next to the PSFs of a
conventional, circular aperture for comparison purposes.

Figure 8:PSFs at four different defocus depths (20, 40, 60
and 80 cm).Top row: For our binary coded aperture.Bottom
row: For a circular aperture.

Once calibration has been performed, images of three
scenes at the four defocus depths (20, 40, 60 and 80 cm) were
taken with each of the selected apertures. During the capture

process, the aperture was set to F2.0, and the exposure time
to 1/20 for all scenes and apertures, to ensure a fair com-
parison. The captured defocused images are then deblurred
using the corresponding calibrated PSF by means of Wiener
deconvolution. We used Wiener deconvolution with a NSR
of 0.005 instead of the prior of natural images, since in real
experiments it gave better results. This may be caused by the
fact that our prior|C|2 is calculatedwith the power spectra
of images frommanmade dayandnatural dayscenes, which
have similar spectral slopes, while the spectral slope for im-
ages frommanmade indoorsscenes (similar to the scenes
we capture) is slightly different [PCR10]. The same expo-
sure and aperture settings were used for all our coded aper-
tures. Figure9 depicts the recovered images for three differ-
ent apertures: a circular aperture, our best binary coded aper-
ture and the best aperture obtained by Zhou et al. [ZN09] for
a noise value ofσ = 0.005, to which we have also compared
in Section6. Defocus depths are 60 cm for recovered im-
ages (b), (c) and (d) and 80 cm for (e) and (f). Insets depict
the corresponding PSF.

Our aperture clearly outperforms the circular one, which
was to be expected from the existing body of literature about
coded apertures. More interesting is the comparison with
a current state-of-the-art coded aperture; when compared
to the aperture described by Zhou et al., our perceptually-
optimized approach yields less ringing artifacts, exhibiting,
qualitatively, a better overall performance. Additional results
for two other scenes at four defocus depths (20, 40, 60 and
80 cm) can be seen in Figure10. Please note that the slight
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Figure 7: Scatter plots showing the performance of our best binary coded aperture against that of a circular aperture (top row)
and against the coded aperture proposed by Zhou et al. [ZN09] for an image noise ofσ = 0.005 (bottom row). For the sake of
consistency, theL2 norm is depicted as(1− L2/100), L2 being the percentage with respect to the maximum error. It can be
seen how our proposed aperture outperforms the other two.

Non-binary typeA
L2(ibest,J) SSIM(ibest,J) VDP2(ibest,J) Qa(ibest,J) σ(Qa(ibest,J)) Qa(I ,J) σ(Qa(I ,J))

Λ = {1,0,0} 1.0671 0.8887 69.3253 2.5812 0.1265 2.5645 0.0053
Λ = {0,1,0} 1.1840 0.9012 63.4331 2.5245 0.1435 2.5258 0.0026
Λ = {0,0,1} 1.0707 0.8867 70.0342 2.5763 0.1352 2.5584 0.0127
Λ = {1,1,1} 1.1368 0.8928 72.3652 2.6050 0.1186 2.5963 0.0069

Non-binary typeB
L2(ibest,J) SSIM(ibest,J) VDP2(ibest,J) Qa(ibest,J) σ(Qa(ibest,J)) Qa(I ,J) σ(Qa(I ,J))

Λ = {1,0,0} 1.1436 0.8880 68.9516 2.5660 0.1460 2.5460 0.0168
Λ = {0,1,0} 1.1979 0.9022 63.1623 2.5218 0.1399 2.5153 0.0054
Λ = {0,0,1} 1.1392 0.8869 69.4941 2.5705 0.1203 2.5460 0.0019
Λ = {1,1,1} 1.1542 0.8998 70.8276 2.5965 0.1224 2.5692 0.0234

Table 2: Performance evaluation of non-binary apertures obtained with the different objective functions (i.e. different weight
vector Λ). The first five columns show values of the different metrics and aggregate quality factor for the best non-binary
apertures of each evaluation function averaged across the 30 test images, plus the standard deviation of the latter. The two
rightmost columns show, for each evaluation function, the mean aggregate quality factor of the three executions and its standard
deviation. Note that the L2 norm is shown as a percentage with respect to the maximum error.

changes in brightness in the images are due to different illu-
mination conditions, and not to the light transmitted by the
aperture.

Minor artifacts that appear in our recovered images are
probably due to errors in the calibrated PSF. Another possi-
ble cause of error may be inaccurately modeled image noise
[SJA08]. Additionally, although the PSF actually varies spa-
tially across the image [LFDF07], we consider here one sin-

gle PSF, measured at the center of the image, for the entire
image plane.

The non-binary apertures obtained in Section7 were also
evaluated in a real scenario. Figure12 shows the recovered
images obtained with the best binary aperture (left), the best
non-binary aperture of type A (middle) and the best non-
binary aperture of type B (right). Although non-binary aper-
tures seem to yield images with lower background noise, evi-
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a) Defocusedimage captured with our best binary aperture b) Resultobtained for a circular aperture (d = 60cm)

c) Resultobtained for our best binary aperture (d = 60cm) d) Resultfor the aperture by Zhou et al. forσ = 0.005 (d= 60cm)

Close-ups ofc) Close-ups ofd)

e) Resultobtained for our best binary aperture (d = 80cm) f) Resultfor the aperture by Zhou et al. forσ = 0.005 (d= 80cm)

Close-ups ofe) Close-ups off)

Figure 9: Recovered images for different apertures (circular, Zhou’s forσ = 0.005 and our best perceptually-optimized binary
aperture) and different defocus depthsd. Close-ups of this images show the improved quality and fewer ringing artifacts of
images recovered with the perceptually-optimized aperture. Insets depict the PSF of the aperture used in each case. Note that
results for the circular aperture are significantly brighter because of its higher transmission rate.
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a) d= 20cm b) d= 40cm

c) d= 60cm d) d= 80cm

a) d= 20cm b) d= 40cm

c) d= 60cm d) d= 80cm

Figure 10:Defocused and recovered images at four different defocus depthsd obtained with the perceptually-optimized binary
coded aperture for two different scenes.

dence is not strong enough to derive any definite conclusion.
It is worth noting that metrics based on simulations of the
capture process yield similar quality values for binary aper-
tures and their non-binary counterparts (see Tables1 and2).
This may suggest the need for a more complex image forma-
tion model, essentially in what regards to the additive noise,
a need which has already been observed by other authors in
the field [VRA∗07].

Observations from real-world images are consistent

with the power spectra shown in Figure2, where our
perceptually-optimized apertures exhibit larger amplitudes
for the majority of the spectrum compared to Zhou’s and
the circular aperture. Additionally, in order to assess how
well real results correlate with simulated ones we have com-
pared results from a real setup with results simulated for the
same conditions. We have done this for our best binary coded
aperture selected in red in Figure4. To do this we compute
the size of the blur for the different defocus depths used in

c© 2012 TheAuthor(s)
Journal compilationc© 2012 The Eurographics Association and Blackwell Publishing Ltd



Figure 11: Correlation between real-capture and simulated-capture results. Average quality of the recovered images for both
cases (real and simulated) according to each metric for the four defocus depths tested (20, 40, 60 and 80 cm) and to theaggregate
quality factorQa calculated accordingto Equation6.

Figure 12:Comparison between deblurred images captured
using perceptually-optimized binary (left), non-binary type
A (middle), and non-binary type B (right) apertures.

the real scenario (20, 40, 60 and 80 cm) and scale the PSF
accordingly when computing the simulated blurred images.
Althought this scaling is only an approximation to what the
real PSF would be, it does give information on how well
simulated results extrapolate to real results. Figure11shows
the results obtained by the different quality metrics (plus the
aggregate factorQa) for realand simulated results. We can
clearly see how both exhibit the same behavior and trends,
thus showing the validity of the use of simulated capture pro-
cesses for the evaluation of the different apertures.

Finally, the time until convergence when running the al-
gorithm on an Intel core i7 930 @2.80GHz is 13,72 hours
for the evaluation function using (Λ = 1,1,1), which is obvi-
ously the most expensive scenario. As expected, computing
the HDR-VDP 2 metric consumes the largest amount of time
(62% of the total execution time whenΛ = 1,1,1), followed
by SSIM; there is clearly a trade-off between complexity of
the metrics included and performance of the resulting aper-
tures.

9. Conclusions and Future Work

In this paper we have presented a method to obtain coded
apertures for defocus deblurring, which takes into account
human perception for the computation of the optimal aper-
ture pattern. Following previous approaches, we pose the
problem as an optimization, and, to our knowledge, propose

the first algorithm that makes use of perceptual quality met-
rics in the objective function. We explore the performance of
different quality metrics for the design of coded apertures,
including the well-established SSIM, and the state-of-the-
art HDR-VDP-2, which features a comprehensive model of
the HVS, as well as theL2 norm, previously used in related
works. The results obtained show that the best apertures are
obtained when a combination of the three metrics is used
in the objective function, clearly outperforms existing aper-
tures, both in simulated and real scenarios, results obtained
by conventional circular apertures and by an existing aper-
ture pattern specifically designed for defocus deblurring.

Additionally, we have explored non-binary aperture pat-
terns, often neglected in the literature. Even though results
with real images seem to indicate a better performance (i.e.
less ringing artifacts) of non-binary apertures with respect to
their binary counterparts, sharpness appears somewhat hin-
dered by non-binary masks in comparison to binary patterns,
resulting in a trade-off between both.

The most important challenge for the future is probably
devising a new model for the noise inherent to the capture
process, which would allow a better modeling of the process
and thus a better design of coded aperture patterns. Although
we show that simulated and real results correlate fairly well,
differences remain, which may be overcome with a better
model.
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