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Fig. 1. A representative subset of the 22 panoramas used to analyze how people explore virtual environments from a fixed viewpoint.
We recorded almost two thousand scanpaths of users exploring these scenes in different immersive and non-immersive viewing
conditions. We then analyzed this data, and provide meaningful insights about viewers’ behavior. We apply these insights to VR
applications, such as saliency prediction (shown in the image as overlaid heatmaps), VR movie editing, panorama thumbnail generation,
panorama video synopsis, and saliency-aware compression of VR content.

Abstract—Understanding how people explore immersive virtual environments is crucial for many applications, such as designing
virtual reality (VR) content, developing new compression algorithms, or learning computational models of saliency or visual attention.
Whereas a body of recent work has focused on modeling saliency in desktop viewing conditions, VR is very different from these
conditions in that viewing behavior is governed by stereoscopic vision and by the complex interaction of head orientation, gaze, and
other kinematic constraints. To further our understanding of viewing behavior and saliency in VR, we capture and analyze gaze and
head orientation data of 169 users exploring stereoscopic, static omni-directional panoramas, for a total of 1980 head and gaze
trajectories for three different viewing conditions. We provide a thorough analysis of our data, which leads to several important insights,
such as the existence of a particular fixation bias, which we then use to adapt existing saliency predictors to immersive VR conditions. In
addition, we explore other applications of our data and analysis, including automatic alignment of VR video cuts, panorama thumbnails,
panorama video synopsis, and saliency-based compression.

Index Terms—Saliency, omnidirectional stereoscopic panoramas.

1 INTRODUCTION

Virtual reality (VR) systems provide a new medium that has the po-
tential to have a significant impact on our society. The experiences
offered by these emerging systems are inherently different from radio,
television, or theater, opening new directions in research areas such as
cinematic VR capture [1], interaction [53], or content generation and
editing [39, 49]. However, the behavior of users who visually explore
immersive VR environments is not well understood, nor do statistical
models exist to predict this behavior. Yet, with unprecedented capabi-
lities for creating synthetic immersive environments, many important
questions arise. How do we design 3D scenes or place cuts in VR vi-
deos? How do we drive user attention in virtual environments? Can we
predict visual exploration patterns? How can we efficiently compress
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cinematic VR content?
To address these and other questions from first principles, it is crucial

to understand how users explore virtual environments. In this work,
we take steps towards this goal. In particular, we are interested in
quantifying aspects of user behavior that may be helpful in predicting
exploratory user behavior in static and dynamic virtual environments
observed from a fixed viewpoint. A detailed understanding of visual
attention in VR would not only help answer the above questions, but
also inform future designs of user interfaces, eye tracking technology,
and other key aspects of VR systems.

A crucial requirement for developing an understanding of viewing
behavior in VR is access to behavioral data. To this end, we have
performed an extensive study, recording 1980 head and gaze trajectories
from 169 people in 22 static virtual environments, which are represented
as stereoscopic omni-directional panoramas. Data is recorded using a
head-mounted display (HMD) in both standing and seated conditions
(VR condition and VR seated condition), as well as for users observing
the same scenes in mono on a desktop monitor for comparison (desktop
condition).

We analyze the recorded data and discuss important insights, such
as the existence of a fixation bias, the mean time until a static stereo
panorama can be considered to be fully explored by users, or the
existence of two apparent modes in viewer behavior, attention and
re-orientation (see Sec. 4 for more details). We then leverage our data
to evaluate existing saliency predictors, designed for narrow field of
view video, in the context of immersive VR, and show how these can
be adapted to VR applications. Saliency prediction is a well-explored
topic and many existing models are evaluated by the MIT Saliency



Benchmark [5]. However, these models assume that users sit in front
of a screen while observing the images – ground truth data is collected
by eye trackers recording precisely this behavior. VR is different from
traditional 2D viewing in that users naturally use both significant head
movement and gaze to visually explore scenes. We show that this leads
to a fixation bias around the equator that is not observed in conventional
viewing conditions. Figure 1 shows panoramic views of some of our
22 scenes with superimposed saliency computed from the recorded
scan paths in the VR condition. Apart from saliency, we offer several
other example applications that are directly derived from our findings.
Specifically, our contributions are:

• We record and provide an extensive dataset of visual exploration
behavior in stereoscopic, static omni-directional stereo (ODS) pa-
noramas. The dataset contains head orientation and gaze direction,
and it captures several different viewing conditions. Scenes, data,
and code for analysis (Sec. 3) are available online1

• We provide low-level and high-level analysis of the recorded data-
set. We derive relevant insights that can be crucial for predicting
saliency in VR and other VR applications, such as the existence
of an attention bias in VR scenes or differences in head and gaze
movement statistics when fixating (Sec. 4)

• We evaluate existing saliency predictors with respect to their per-
formance in VR applications. We show how to tailor these predic-
tors to ODS panoramas and demonstrate that saliency prediction
from head movement alone performs on par with state-of-the-art
saliency predictors for our scenes (Sec. 5)

• We demonstrate several applications of this saliency prediction,
including automatic panorama thumbnails, VR video synopsis,
compression, and VR video cuts (Sec. 6)

2 RELATED WORK

Modeling human gaze behavior and predicting visual attention has
been an active area of vision research. In their seminal work, Koch
and Ullman [27] introduced a model for predicting salient regions
from a set of image features. Motivated by this work, many models of
visual attention have been proposed throughout the last three decades.
Most of these models are based on bottom-up, top-down, or hybrid
approaches. Bottom-up approaches build on a combination of low-
level image features, including color, contrast, or orientation [8, 21,
26, 36] (see Zhao and Koch [62] for a review). Top-down models
take higher-level knowledge of the scene into account such as context
or specific tasks [16, 22, 25, 35, 55]. Recently, advances in machine
learning and particularly convolutional neuronal networks (CNNs)
have fostered the convergence of top-down and bottom-up features for
saliency prediction, producing more accurate models [20,34,42,59,63].
Jiang et al. [24] proposed a new methodology to collect attentional
data on scales sufficient for these deep learning methods. Volokitin
et al. [58] used features learned by CNNs to predict when saliency
maps predicted by a model will be accurate and when fixations will be
consistent among human observers. Significant prior work explored
rigorous benchmarking of saliency models, the impact of the metric on
the evaluation result, and shortcomings of state-of-the-art models at the
time [4, 6, 45]. Recent work also attempts to extend CNN approaches
beyond classical 2D images by computing saliency in more complex
scenarios such as stereo images [9, 17] or video [7, 33]. A related
line of research is devoted to modeling the gaze scanpath followed
by subjects, i.e., the temporal evolution of the viewer’s gaze [23, 32].
Marmitt et al. [37] developed a metric to evaluate predicted scanpaths
in VR and showed that predictors built for classic viewing conditions
perform significantly worse in VR. Building on the rich literature in
this area, we explore user behavior and visual attention in immersive
virtual environments, which can help build similar models for VR.

What makes VR different from desktop viewing conditions is the fact
that head orientation is used as a natural interface to control perspective

1https://vsitzmann.github.io/vr-saliency

(and in some cases navigation as well [56]). The interactions of head
and eye movements are complex and neurally coupled, for example
via the vestibulo-ocular reflex [30]. Koehler et al. [28] showed that
saliency maps can differ depending on the instructions given to the
viewer. For more information on user behavior in VR, we refer to
Ruhland et al. [46], who provide a review of eye gaze behavior, and
Freedman [13], who discusses the mechanisms that characterize the
coordination between eyes and head during visual orienting movements.
With the data recorded in this project, we observe the vestibulo-ocular
reflex and other interesting effects. In the paper and supplemental
material, we provide an extensive analysis of the user data, and derive
statistics describing many low-level aspects of viewing behavior. We
hope that this analysis will be useful for basic vision research.

Recent work of Nakashima et al. [38] is closely related to some
aspects of our work. They propose a head direction prior to improve
accuracy in saliency-based gaze prediction through simple multipli-
cation of the gaze saliency map by a Gaussian head direction bias.
Concurrent work by Upenik et al. [57] explores visual attention in VR
solely by tracking head orientation. The data collected in this paper
and in-depth analyses augment prior work in this field, and may allow
for future data-driven models for visual behavior to be learned.

Finally, gaze tracking has found many applications in VR user in-
terfaces [54] and gaze-contingent displays [12, 41, 50]. The ability to
predict viewing behavior would be helpful for all of these applications.
For example, gaze-contingent techniques may become possible without
dedicated gaze trackers, which are currently expensive and not widely
available. Moreover, techniques for editing VR content are starting to
emerge [39,49]. The understanding of user behavior we aim to develop
in this paper could also influence these and other tools for content
creation.

3 RECORDING HEAD ORIENTATION AND GAZE

In this section, we summarize our efforts towards recording a dataset
that contains head orientation and gaze direction for users watching
stereoscopic VR panoramas in several different viewing conditions;
we provide additional details in the supplemental material. These data
form the basis of a statistical analysis of viewing behavior (Sec. 4),
as ground truth for saliency prediction (Sec. 5), and also as reference
saliency for several higher-level applications (Sec. 6).

3.1 Data capture
Stimuli For the experiments reported in this paper, we used 22

high-resolution omni-directional stereo panoramas (see Figure 1 and
supplemental material). We opt for a fixed viewpoint because for the
subsequent analyses it is crucial that subjects see the exact same content.
Further, in a 3D scenario the variability is likely to be much higher,
requiring extremely large numbers of subjects to draw significant con-
clusions. The scenes include (14) indoor and (8) outdoor scenarios and
do not contain landmarks that may be recognized by the users. For
each scene we explore different conditions, which limits the number
of scenes we can have with the experiment size remaining tractable.
With the current stimuli and conditions, we have collected nearly 2,000
trajectories from 169 viewers. All scenes are computer generated by
artists; we received permission to use them for this study.

Conditions We recorded users observing the 22 panoramas in
three different conditions: in a standing position using a head-mounted
display (i.e., the VR condition), seated in a non-swivel chair using a
head-mounted display (i.e., the VR seated condition, making it more
difficult to turn around), and seated in front of a desktop monitor
(i.e., the desktop condition). In the desktop condition, the scenes are
monoscopic, and users navigate with a mouse. For each scene, we
tested four different starting points, spaced at 90◦ longitude, which
results in a total of 264 conditions. These starting points were chosen
to cover the entire longitudinal range, while keeping the number of
different conditions tractable. We chose not to randomize the starting
point over the whole latitude (and rather select randomly from four
fixed ones) to limit the number of conditions while being able to analyze
the influence of the starting point (Sec. 4.5 and supplement). Complete
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randomization over the starting point could be of interest for future
studies.

Participants For the VR condition, we recorded 122 users (92
male, 30 female, age 17-59). The experiments with the VR seated
condition were performed by 47 users (38 male, 9 female, age 17-
39). Users were asked to first perform a stereo vision (Randot) test to
quantify their stereo acuity. For desktop experiments, we recruited 44
additional participants (27 male, 17 female, age 18-33). All participants
reported normal or corrected-to-normal vision.

Procedure All VR scenes were displayed using an Oculus DK2
head-mounted display, equipped with a pupil-labs2 stereoscopic eye
tracker recording at 120 Hz. The DK2 offers a field of view of 95×
106◦. The Unity game engine was used to display all scenes and record
head orientation while the eye tracker collected gaze data on a separate
computer. Users were instructed to freely explore the scene and were
provided with a pair of earmuffs to avoid auditory interference. Scenes
and starting points were randomized, while ensuring that each user
would only see the same scene once from a single random starting
point. Each user was shown 8 scenes. Each scene in a certain condition
was shown to the user during 30 seconds, while the total time per user
that the experiment took, including calibration and explanation, was
approximately 10 minutes.

We modeled the desktop condition after typical, mouse-controlled de-
sktop panorama viewers on the web (i.e., YouTubeVR or Facebook360).
Users sat 0.45 meters away from a 17.3” monitor with a resolution of
1920×1080 px, covering a field of view of 23×13◦. We used a Tobii
EyeX eye tracker with an accuracy of 0.6◦ at a sampling frequency of
55 Hz [15]. The image viewer displayed a rectilinear projection of a
97×65◦ viewport of the panorama. To keep the field of view consistent,
no zooming was possible. We instructed the users on how to use the
image viewer, before showing the 22 scenes for 30 seconds each. In
this condition, we only collected gaze data since users rarely re-orient
their head. Instead, we recorded where the users interactively place the
virtual camera in the panorama as a proxy for head orientation.

3.2 Data processing
To identify fixations, we transformed the normalized gaze tracker coor-
dinates to latitude and longitude in the 360◦ panorama. This is neces-
sary to detect users fixating on panorama features while turning their
head. We used thresholding based on dispersion and duration of the
fixations [47]. For the VR experiments, we set the minimum duration
to 150 ms [47] and the maximum dispersion to 1◦ [2]. For the desktop
condition, we found the Tobii EyeX eyetracker to be more noisy than
the PupilLabs eyetracker. Thus, we first smoothed this data with a
running average of 2 samples, and detected fixations with a dispersion
of 2◦. We counted the number of fixations at each pixel location in the
panorama. Similar to Judd et al. [25], we only consider measurements
from the moment where user’s gaze left the initial starting point to
avoid adding trivial information. We convolved these fixation maps
with a Gaussian with a standard deviation of 1◦ of visual angle, the
area of the field of view seen sharply on the fovea of the user, to yield
continuous saliency maps [31].

4 UNDERSTANDING VIEWING BEHAVIOR IN VR
With the recorded data, we can gather insights and investigate a number
of questions about the behavior of users exploring virtual environments.
In the following, we analyze both low-level characteristics, such as
duration of the fixations and speed of gaze, and higher-level charac-
teristics, such as the influence of the content or characteristics of the
scene.

4.1 Is viewing behavior similar between users?
We first want to assess whether viewing behavior between users is
similar; this is also indicative of how robust our data is, and thus
how much we can rely on it to draw conclusions. To answer this, we
analyze the agreement between users. Specifically, we compute the

2https://pupil-labs.com
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Fig. 2. Left: ROC curve of human performance averaged across users
(magenta) and individual ROCs for each scene (light gray). The fast
convergence to the maximum is indicative of a strong agreement between
users. Right: Exploration time computed as the average time until a
specific longitudinal offset from the starting point is reached.

inter-observer congruency metric by means of a receiver operating
characteristic curve (ROC) [31,55]. This metric calculates the ability of
the ith user to predict a ground truth saliency map, which is computed
from the fixations of all the other users averaged. A single point
in the ROC curve is computed by finding the top n% most salient
regions of the ground truth saliency map (leaving out the ith user),
and then calculating the percentage of fixations of the ith user that fall
into these regions. We show the average ROC for all the 22 scenes
in Figure 2 (left), compared with chance (the individual ROCs for
each scene are depicted in light gray). The fast convergence of these
curves to the maximum rate of 1 indicates a strong agreement, and
thus similar behavior, between users for each of the scenes tested.
70% of all fixations fall within the 20% most salient regions. These
values are comparable to previous studies viewing regular images on a
display [31].

4.2 How different is viewing behavior for the 3 conditions?
An important question to ask is whether viewing behavior changes
when exploring a scene under different conditions. Visual inspection
of our three conditions (VR, VR seated, and desktop) shows a high
similarity between the saliency maps (see supplement). For a quanti-
tative evaluation of the similarity of saliency maps (here, and in the
rest of the paper), we use the Pearson correlation (CC) score, which
is a widely used metric in saliency map prediction [6]. It ranges from
−1 (perfectly inversely correlated) to 1 (perfectly correlated). The high
similarity is confirmed by a median CC score of 0.80 when comparing
the VR and the VR seated conditions, and 0.76 when comparing the
VR and the desktop conditions. The latter is a significant insight: since
desktop experiments are much easier to control, it may be possible to
use these for collecting adequate training sets for data-driven saliency
prediction in future VR systems. Given this similarity, we report only
the results of the VR (standing) condition throughout the remainder of
the paper, unless a significant difference is found, and refer the reader
to the supplemental for the VR seated and desktop conditions.

4.3 Is there a fixation bias in VR?
Several researchers have reported a strong bias for human fixations to
be near the center, when viewing regular images [25, 40]. A natural
question to ask is whether a similar bias exists in VR. Similar to Judd
et al. [25], we calculate the average of all 22 saliency maps, and filter
out fixations within the close vicinity (20◦ longitude) of the starting
point. The resulting data indicates that users tend to fixate around the
equator of the panoramas, with very few fixations in latitudes far from
it. To quantify this equator bias, we marginalize out the longitudinal
component of the saliency map, and fit a Laplace distribution—with
location parameter µ and diversity β—to the latitudinal component
(this particular distribution yielded the best match among several tested
distributions). Figure 3 depicts the average saliency map, as well
as our Laplacian fit to the latitudinal distribution and its parameters,
for both the VR and the desktop conditions. While the mean is almost
identical, the equator bias for the desktop condition has a lower diversity.
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Fig. 3. Average saliency maps computed with all the scenes for both
the VR (left) and the desktop (right) conditions. These average maps
demonstrate an “equator bias” that is well-described by a Laplacian fit
modeling the probability of a user fixating on an object at a specific
latitude.

Fig. 4. Saliency maps presenting the lowest (left) and highest (right)
entropy in our dataset. Saliency maps with low entropy have very defined
salient regions while in maps with high entropy fixations are scattered all
over the scene.

As discussed in Section 5, this Laplacian equator bias is crucial for
predicting saliency in VR.

Note that most of the scenes in our study have a clear horizon
line, which may have influenced the observed equator bias along with
viewing preferences, kinematic constraints, as well as the static nature
of the scenes. However, most virtual environments share this type of
scene layout, so we believe our findings generalize to a significant
fraction of this type of content. Further, even for scenes with content
scattered along different latitudes (see, e.g., scene 16 in Fig. 12 of
the supplement, displaying very few salient areas near the poles), we
observed an equator bias. Nevertheless, different tasks or scenarios,
such as gaming, may influence this bias.

4.4 Does scene content affect viewing behavior?
A fundamental issue when analyzing viewing behavior is the potential
influence of scene content. This is of particular relevance for content
creators; since in a VR setup the viewer has control over the camera,
this analysis can help address the key challenge of predicting user
attention.

To characterize scene content in a manner that enables insightful
analysis, we rely on the distribution of salient regions in the scene, in
particular on the entropy of the saliency maps. A high entropy results
from a large number of similarly salient objects distributed throughout
the scene, causing users’ fixations to be scattered all over the scene;
a low entropy results from a few salient objects that capture all the
viewer’s attention. Figure 4 shows the saliency maps of the scenes with
lowest and highest entropy in our dataset.

Our entropy is computed as the Shannon entropy of the ground truth
saliency map, computed, per scene, from the average of all users [25].
The entropy is given by: −∑

N
i=1 s2

i log(s2
i ), with s being the ground

truth saliency, and N the number of pixels. We consider two entropy
levels, low and high, which we term {E0,E1}, respectively. Since a
clear threshold for classifying each scene according to its entropy does
not exist, we take a conservative approach and analyze only the four
scenes with highest and the four with lowest entropy, for a total of eight
scenes.

4.4.1 Viewing behavior metrics
Measuring viewing behavior in an objective manner is not a simple
task. First, we define salient regions as the 5% most salient pixels of a
scene. Figure 5 shows a saliency map and the resulting salient regions
computed with this criterion. We then rely on three metrics recently
proposed by Serrano et al. [49] in the context of gaze analysis for VR
movie editing (time to reach a salient region (timeToSR), percentage
of fixations inside the salient regions (percFixInside), and number of

Fig. 5. Salient region computation. Left: Ground truth saliency map for a
sample scene. Right: Corresponding salient regions (yellow) computed
by thresholding the 5% most salient pixels of the scene.

fixations (nFix), which are summarized in the supplemental material),
and propose a fourth, novel one, tailored (but not limited) to quantifying
the degree of exploration over time in static 360◦ panoramas:

Convergence time (convergTime) For every scene, we obtain
the per-user saliency maps at different time steps, and compute the
similarity (CC score) with the fully-converged saliency map. We plot
the temporal evolution of this CC score, and compute the area under
this curve. This metric represents the temporal convergence of saliency
maps; it is inversely proportional to how long it takes for the fixation
map during exploration to converge to the ground truth saliency map.

4.4.2 Analysis

We first test for independence of observations performing a Wald’s
test (please refer to the supplement). Based on its results, we employ
ANOVA when analyzing percFixInside, since the samples are consi-
dered to be independent, and report significance values obtained from
multilevel modeling for the other three metrics.

We find that the entropy of the scene has a significant effect on nFix
(p < 0.001), timeToSR (p < 0.001), percFixInside (p = 0.022), and
convergTime (p < 0.001). Specifically, on scenes with low entropy
(E0), the time to reach a salient region (timeToSR) is lower. This may
be counter-intuitive, since high entropy scenes contain a larger number
of salient regions and thus it would be easier to reach one. Interestingly,
though, our results indicate that the viewer explores the scene faster
in cases of low entropy, quickly discarding non-salient regions, and
that their attention gets directed towards the few salient regions faster.
This hypothesis is further supported by the behavior of the convergTime
metric, which shows that scenes with low entropy do converge faster,
and is consistent with the number of fixations, and fixations inside the
salient region (nFix and percFixInside): both are higher for low entropy
scenes, indicating that users pay more attention to salient regions when
such regions are less, and more concentrated.

4.5 Does the starting point affect viewing behavior?

We also evaluate whether the starting viewport conditions the final sa-
liency map for a given scene: For each scene, we compute the similarity
between the final saliency map of the ith viewport and the other three,
using again the CC score. We obtain a median CC score of 0.79, which
indicates that the final saliency maps after 30 seconds, starting from
different viewports, converge and are very similar. Additional analy-
sis on the influence of the viewport, including also a state sequence
analysis [14, 49], can be found in the supplement.

4.6 How are head and gaze statistics related?

Many additional insights can be learned from our data, which may
be useful for further vision and cognition research, or in applications
that require predicting gaze or saliency in VR (see also Section 5).
First, we evaluate the speed with which users explore a given scene.
Figure 2 (right) shows this exploration time, which is the average time
that users took to move their eyes to a certain longitude relative to their
starting point. On average, users fully explored each scene after about
19 seconds. Indeed, after this time, all saliency maps in our dataset
have converged to a CC score of at least 0.8 as compared to their final
state. These results suggests that an experimental time of 20 seconds is
sufficient to capture fixations in static stereo panoramas.



Fig. 6. Left: the vestibulo-ocular reflex demonstrated by an inverse linear
relationship of gaze and head velocities. Middle and right: distributions of
longitudinal head velocity and longitudinal eye eccentricity, respectively,
while fixating and while not fixating.

In our experiments, the mean number of fixations across scenes is
55.35 ± 12.85 for the VR condition and 49.68 ± 15.04 for the desktop
condition. The mean duration of fixations in the VR condition is 266 ms
± 132, and 253 ms ± 124 in the desktop condition. This is in the range
reported for traditional screen viewing conditions [47]. The mean gaze
direction relative to the head orientation across scenes is 13.85◦ ±
11.73, which is consistent with the analysis performed by Kollenberg
et al. [29].

We have also identified the vestibulo-ocular reflex [30] in our data.
This reflexive mechanism moves the eyes contrary to the head mo-
vement, in order to stabilize the line of sight and thus improve vision
quality. Figure 6 (left) shows the expected inverse linear relationship
between head velocity and relative gaze velocity when fixating. Given
this observation, we further analyze the interaction between eye and
head movements when shifting to a new target. We offset in time head
and gaze acceleration measurements relative to each other, and com-
pute the cross-correlation for different temporal shifts. Our data reveals
that head follows gaze with an average delay of 58 ms, where the lar-
gest cross-correlation is observed, which is consistent with previous
work [11, 13].

It is well-known that gaze velocities differ when users fixate and
when they do not [47]. We look at whether this is also the case for
head velocities, since they could then act as a rough proxy for fixation
classification. Figure 6 (middle) shows that users move their head
at longitudinal velocities significantly below the average head speed
when they are fixating, and above average when they are not. Further,
Figure 6 (right) shows that the longitudinal rotation angle of the eyes
relative to the head orientation (eye eccentricity) is significantly smaller
when users are fixating. According to this data, users appear to behave
in two different modes: attention and re-orientation. Eye fixations
happen in the attention mode, when users have “locked in” on a salient
part of the scene, while movements to new salient regions happen in
the re-orientation mode. Being able to identify such modes in real time,
from either head or gaze movement, can be very useful for interactive
applications. Further results for the different conditions, and for the
latitudinal direction, can be found in the supplement. Finally, this
data and findings can be leveraged for time-dependent and head-based
saliency prediction, as we will show in Sections 5.2 and 5.3.

5 PREDICTING SALIENCY IN VR
In this section, we show how existing saliency prediction models can be
adapted to VR using insights of our data analysis, such as the equator
bias. Then, we ask whether the problem of time-dependent saliency
prediction is a well-defined one that can be answered with sufficient
confidence. Finally, we analyze how well head movement alone, for
example captured with inertial sensors, can predict saliency without
knowing the exact gaze direction.

5.1 Predicting saliency maps
Instead of learning VR saliency models from scratch, we ask whether
existing models could be adopted to immersive applications. This
would be ideal, because many saliency predictors for desktop viewing
conditions already exist, and advances in that domain could be directly

Equirectangular Cube Map Patch Based
Without Equator Bias µ =0.48 µ = 0.37 µ =0.43
With Equator Bias µ =0.50 µ =0.44 µ =0.49

Table 1. Quantitative evaluation of three different projection methods
with and without equator bias. We list the mean CC score for all 22 VR
scenes used in this study. Applying the equator bias significantly im-
proves the quality of all approaches. Distortions of the equirectangular
projection near the poles do not affect saliency prediction as much as
the shortcomings of other types of projection after the equator bias is
applied.

transferred to VR conditions. The fact that gaze statistics are closely
related in VR and in traditional viewing (Section 4.6) is indicative
of the fact that existing saliency models may be adequate, at least to
some extend, to VR. In this context, two primary challenges arise: (i)
mapping a 360◦ panorama to a 2D image (the required input for existing
models) distorts the content due to the projective mapping from sphere
to plane; and (ii) head-gaze interaction may require special attention
for saliency prediction in VR. We address both of these issues in the
following.

Which projection is best?
Before running a conventional saliency predictor on a spherical pano-
rama or parts of it, the image has to be projected into a plane. Different
projections would naturally result in different types of distortions that
may affect the saliency predictor. For an equirectangular projection,
for example, we expect large distortions near the poles. A cube map
projection may result in discontinuities between some of the cube’s fa-
ces. Alternatively, smaller patches can be extracted from the panorama,
saliency prediction applied to each of them projected onto a plane, and
the result stitched together and blended into a saliency panorama. The
latter, patch-based approach would result in the least amount of geo-
metrical distortions, but it is also the most computationally expensive
approach and it gives up global context for the saliency prediction.

In Figure 8 and Table 1 we compare saliency prediction using all
three projection methods qualitatively and quantitatively. For each
projection, we compute a saliency map using the state-of-the-art ML-
Net saliency predictor [10], and then optionally multiply it by the
latitudinal equator bias we derived in Section 4.3. We incorporate
the equator bias in a multiplicative manner. This only increases the
weight of areas that the saliency predictor has found to be potentially
salient, while an additive bias would increase saliency of all points
around the equator. Alternatively, it could also be incorporated by
addition and re-normalization. Figure 8 shows an example saliency
map predicted on the three different sphere projections after applying
the equator bias. We also compare the average CC score for all three
projection methods and all 22 scenes in Table 1. Quantitatively, saliency
computed directly on the equirectangular projection with the equator
bias applied not only performs best but it is also the fastest of the three
approaches. The benefit of applying the equator bias is smaller for the
equirectangular projection than for the other two projections. This may
be because the distortions at the poles introduced by the projection
may naturally lead to less saliency predicted at the poles than in the
cube map and patch-based approaches. While this seems to make this
prediction method competitive even without the equator bias, it may
lead to inferior generalization as compared to an explicit modeling.
Since the equirectangular and patch-based methods using the equator
bias perform almost on par, in the following, we use the patch-based
method when processing time is not critical, since it is not susceptible
to projective distortions.

Which predictor is best?
The fact that existing saliency predictors seem to apply to VR scena-
rios is important, because rapid progress is being made for saliency
prediction with images and videos. Advances in those domains could
directly improve saliency prediction in VR. Here, we further evaluate
several different existing predictors both quantitatively and qualitati-
vely.



Fig. 7. Saliency prediction for omni-directional stereo panoramas. Existing saliency predictors can be applied to spherical panoramas after they are
projected onto a plane, here performed with the patch-based method described in the text. These methods tend to over-predict saliency near the
poles. By multiplying the predicted saliency map by the longitudinal equator bias (EB) derived in the previous section, we achieve a good match
between ground truth (center left) and predicted saliency (right). Note that this procedure could be applied to any saliency predictor; we chose two
top-scoring predictors as an example.

Fig. 8. Comparison of saliency prediction using different projections from
sphere to plane. After applying the equator bias, all three projection
methods result in comparable saliency maps for this example.

Table 2 lists mean and standard deviation of the CC score for all
22 scenes in the VR condition, and for users exploring the same scenes
in the desktop condition. These numbers allow us to analyze how good
and how consistent across scenes a particular predictor is. We test the
equator bias by itself as a baseline, as well as two of the highest-ranked
models in the MIT benchmark where source code is available: ML-
Net [10] and SalNet [42], together with the equator bias. We see that
the two advanced models perform very similar and do much better
than the equator bias alone. We also see that both of these models
predict viewing behavior in the desktop condition better than for the
VR condition. This makes sense, because the desktop condition is what
these models were trained for originally. In Figure 7 we also compare
qualitatively the saliency maps of three scenes recorded under the VR
condition (all scenes in the supplement).

5.2 Can time-dependent saliency be predicted with suffi-
cient confidence?

Virtual environments impose viewing conditions much different from
those of conventional saliency prediction. Specifically, the question of
temporal evolution arises: for users starting to explore the scene at a
given starting point, is it possible to predict the probability that they
fixate at specific coordinates at a time instant t? This problem is also
closely related to scanpath prediction. We use data from Section 4 to
build a simple baseline model for this problem: Figure 2 (right) shows

EB ML-Net + EB SalNet + EB
VR µ =0.34±0.13 µ =0.49±0.11 µ =0.47±0.13
Desktop µ =0.37±0.11 µ =0.57±0.11 µ =0.52±0.12

Table 2. Quantitative comparison of predicted saliency maps using a
simple equator bias (EB), and two state-of-the-art models together with
the EB. Numbers show average mean and standard deviation of CC
scores, for each scene, between prediction and ground truth recorded
from users exploring 22 scenes in the VR and desktop conditions. The
proposed patch-based method was used to predict the saliency maps
for both predictors.
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Fig. 9. Time-dependent saliency prediction by uncovering the converged
saliency map with the average exploration speed determined in Section 4.

an estimate for when users reach a certain longitude on average. We
can thus model the time-dependent saliency map of a scene with an
initially small window that grows larger over time to progressively
uncover more of a converged (predicted or ground truth) saliency map.
The part of the saliency map within this window is the currently active
part, while the parts outside this window are set to zero. The left and
right boundaries of the window are widened with the speed predicted
in Figure 2 (right).

Figure 9 visualizes this approach. We generate the time-dependent
saliency maps from the converged ground truth maps for all 22 scenes
and compare them with the actual ground truth at each timestep. We use
the fully-converged saliency map as a baseline. The time-dependent,
constructed saliency maps model the recorded data better than the
converged saliency map within the first 6 seconds. Subsequently, they
perform slightly worse until the converged map is fully uncovered after



about 10 seconds, and the model is thus identical to the baseline. Our
simple time-dependent model achieves an average CC score of 0.57
over all scenes, viewports, and the first 10 seconds (uncovering the
ground truth saliency map), while using the converged saliency map as
a predictor yields a CC of just 0.47.

Although this is useful as a first-order approximation for time-
dependent saliency, there is still work ahead to adequately model time-
dependent saliency over prolonged periods. In fact, due to the high
inter-user variance of recorded scanpaths3, the problem of predicting
time-dependent saliency maps may not be a well-defined one. Perhaps
a real-time approach that would use head orientation measured by an
inertial measurement unit (IMU) to predict where a specific user will
look next could be more useful than trying to predict time-dependent
saliency without any knowledge of a specific user.

5.3 Can head orientation be used for saliency prediction?
The analysis in Section 4 indicates a strong correlation between head
movement and gaze behavior in VR. In particular, Figure 6 (middle)
shows that fixations usually occur with low head velocities (except for
the vestibulo-ocular reflex). This insight suggests that an approximation
of a saliency map may be obtained from the longitudinal head velocity
alone, e.g. measured by an IMU, without the need for gaze tracking.

We validate this hypothesis by counting the number of measurements
at pixel locations where the head speed falls below a threshold of
19.6 ◦/s for all experiments in the VR condition. We then blur this
information with a Gaussian kernel of size 11.7◦ of visual angle, to
take into account the mean eye offset while fixating (Figure 6, right).
Qualitative results are shown in the supplemental material. For a
quantitative analysis, we compute the CC score between these head
saliency maps and the ground truth and compared it with the results
obtained from the predictors examined in Table 2. Our CC score of
0.50 places our approximation on par with the performance of both
saliency predictors tested; this is a positive and interesting result, given
the fact that no gaze information is used at all. Head saliency maps
could therefore become a valuable tool to analyze the approximate
regions that users attend to from IMU data alone, without the need for
additional eye-tracking hardware.

6 APPLICATIONS

In this section, we outline several applications for VR saliency pre-
diction. Rather than evaluating each of the applications in detail and
comparing extensively to potentially related techniques, the goal of this
section is to highlight the importance and utility of saliency prediction
in VR for a range of applications with the purpose of stimulating future
work in this domain.

6.1 Automatic alignment of cuts in VR video
How to place cuts in VR video is a question that was recently addressed
by Serrano et al. [49]. In a number of situations, alignment of the
objects of interest before and after the cut is a safe assumption, since it
facilitates the viewer to ”lock in” on the action immediately after the
cut. The proposed saliency prediction facilitates automatic alignment
of such cuts. We show in Figure 10 and in the supplemental video
that predicted saliency maps can be used to align VR video before and
after a cut by shifting the cuts in the longitudinal direction such that the
Pearson CC of the predicted saliency maps is maximized. We use the 72
scenes provided by Serrano et al. [49], which were manually aligned to
overlapping regions of interest (ROI) before and after a cut. However, in
some there are multiple ROIs, and thus multiple meaningful alignments
possible. We predict saliency maps before and after the cut using the
predictor described as performing best in Section 5.1 (i.e., ML-Net
with equator bias on equirectangular projection), and then shift the
saliency map after the cut with respect to the saliency map before
the cut such as to maximize the Pearson correlation. For the scenes
with one ROI visible before and after the cut, the median error of our

3While converged saliency maps show a high inter-user agreement
(Section 4.1), this is not necessarily the case for scanpaths, and thus for time-
dependent saliency.

Cross-correlation

Fig. 10. Automatic alignment of cuts in VR video. To align two video
segments, we can maximize the correlation between the saliency maps
of the last frame in the first segment and the first frame of the second
one. The cross-correlation accounting for all horizontal shifts is shown
on top of this example, which has been automatically aligned with the
proposed algorithm.

Fig. 11. Automatic panorama thumbnail generation. The most salient
regions of a panorama can be extracted to serve as a representative
preview of the entire scene.

method with respect to the manually aligned results is 2.11◦, which
mildly increases to 9.14◦ if we include the scenes with two ROIs in the
same field of view. Qualitative analysis shows that the alignments are
meaningful and succeed to align salient regions, however, performance
is strongly dependent on the quality of the saliency predictor used. This
indicates that saliency-based automatic alignment of video cuts is a
useful way to guide users when editing VR videos, suggesting good
initial alternatives, but it may not be able to completely replace user
interaction. Full alignment results can be found in the supplemental.

6.2 Panorama thumbnails

Extracting a small viewport that is representative of a panorama may be
helpful as a preview or thumbnail. However, VR panoramas cover the
full sphere and most of the content may not be salient at all. To extract
a thumbnail that remains representative of a scene in more commonly
used image formats and at lower resolutions, we propose to extract
the gnomonic, or rectilinear patch of the panorama that maximizes
saliency within. To this end, we predict the saliency map of the entire
panorama as discussed in Section 5.1. Then, we use an exhaustive
search for the subregion with a fixed, user-defined field of view, that
maximizes the integrated saliency within its gnomonic projection. A
2D Gaussian weighting function is applied to the predicted saliency
values within each patch before integration to favor patches that center
the most salient objects. While this is an intuitive approach, it is also
an effective one. Results are shown in Figure 11 and, for all 22 scenes,
in the supplemental material. Note that this approach to thumbnail
generation is also closely related to techniques for gaze-based photo
cropping [48].



Fig. 12. Automatic panorama video synopsis. Saliency prediction in VR
videos can be used to create a short, stop-motion-like animation that
summarizes the video. For this application, we predict saliency of each
frame, extract a panorama thumbnail from one of the first video frames,
and then search every Nth frame for the window with highest saliency
within a certain neighborhood of the last window.

6.3 Panorama video synopsis

Automatically generating video synopses is an important and active
area of research (e.g., [44]). Most recently, Su et al. [51, 52] introdu-
ced the problem of automatically extracting paths of a camera with a
smaller field-of-view through 360◦ panorama videos, dubbed pano2vid.
Good saliency prediction for monoscopic and stereoscopic VR videos
can help improve these and many other applications. Figure 12, for ex-
ample, shows an approach to combining video synopsis and pano2vid.
Here, we predict the saliency for each frame in a video as discussed
in Section 5.1, and extracted the panorama thumbnail from the first
frame, as discussed in the previous subsection. In subsequent frames,
we search for the window in the panorama with the highest saliency
that is close to the center of the last window. Neither the saliency
prediction step nor this simple search procedure enforce strict temporal
consistency, but the resulting panorama video synopsis works quite
well (see supplemental video).

6.4 Saliency-aware VR image compression

Emerging VR image and video formats require substantially more
bandwidth than conventional images and videos. Yet, low latency is
even more critical in immersive environments than for desktop viewing
scenarios. Thus, optimizing the bandwidth for VR video with advanced
compression schemes is important and has become an active area of
research [61]. Inspired by saliency-aware video compression sche-
mes [19], we test an intuitive approach to saliency-aware compression
for omni-directional stereo panoramas. Specifically, we propose to
maintain a higher resolution in more salient regions of the panorama.

To evaluate potential benefits of saliency-aware panorama compres-
sion, we downsample a cube map representation of the omni-directional
stereo panoramas with a bicubic filter by a factor of 6. We then ups-
ample the low-resolution cube map and blend it with the 10% most
salient regions of the high-resolution panoramas, using the ground-truth
saliency maps. Overall, the compression ratio of the raw pixel count
is thus 25%. Figure 13 shows this saliency-aware compression for an
example image.

To evaluate the proposed saliency-aware VR image compression,
we carried out a pilot study to assess the perceived quality of saliency-
aware compression when compared to regular downsampling for a
comparable compression ratio. To this end, users were presented with
ten randomized pairs of stereo panoramas, and they were asked to pick
the one that had better quality in a two-alternative forced choice (2AFC)
test. For each pair, we sequentially displayed the two panoramas in
randomized order, with a blank frame of 0.75 seconds between the two
alternatives [43]. A total of eight users participated in the study, all
reported normal or corrected-to-normal vision. The results of the study
are shown in Figure 13 (bottom left). Saliency-aware compression
was preferred for most scenes, and performed worse in only one scene.
These preliminary results encourage future investigations of saliency-
aware image and video compression for VR.

Fig. 13. Saliency-aware panorama compression. Top left: original, high-
resolution region of the input panorama. Inset shows the compression
map based on saliency information, where green indicates more salient
regions. Right: Close-ups showing the differences between saliency-
aware compression and conventional downsampling. Note that salient
regions retain a better quality in our compression, while non-salient
regions get more degraded. Bottom left: Preference counts for the ten
scenes displayed during the user study.

7 DISCUSSION

In summary, we collect a dataset that includes gaze and head orientation
for users observing omni-directional stereo panoramas in VR, both in a
standing and in a seated condition. We also capture users observing the
same scenes in a desktop scenario, exploring monoscopic panoramas
with mouse-based interaction. The data encompasses 169 users in three
different conditions, totaling 1980 head and gaze trajectories.

The primary insights of our data analysis are: (1) gaze statistics and
saliency in VR seem to be in good agreement with those of conventional
displays; as a consequence, existing saliency predictors can be applied
to VR using a few simple modifications described in this paper; (2) head
and gaze interaction are coupled in VR viewing conditions – we show
that head orientation recorded by inertial sensors may be sufficient to
predict saliency with reasonable accuracy without the need for costly
eye trackers; (3) we can accurately predict time-dependent viewing
behavior only within the first few seconds after being exposed to a
new scene but not for longer periods of time due to the high inter-
user variance; (4) the distribution of salient regions in the scene has a
significant impact on how viewers explore a scene: the fewer salient
regions, the faster user attention gets directed towards any of them and
the more concentrated their attention is; (5) we observe two distinct
viewing modes: attention and re-orientation, potentially distinguishable
via head or gaze movement in real time and thus useful for interactive
applications.

These insights could have a direct impact on a range of common
tasks in VR. We outline a number of applications, such as panorama
thumbnail generation, panorama video synopsis, automatically placing
cuts in VR video, and saliency-aware compression. These applications
show the potential that saliency has for emerging VR systems and we
hope to inspire further research in this domain.

Future Work Many potential avenues of future work exist. We
did not use a 3D display or mobile device since we wanted to closely
resemble the most standard viewing condition (regular monitor or
laptop). Alternative viewing devices could be interesting for future
work. Nevertheless, one of our goals is to analyze whether viewing
behavior using regular desktop screens is similar to using a HMD, and
our analysis seems to support this hypothesis. We believe this is an
important insight, since it could enable future work to collect large
saliency datasets for omni-directional stereo panoramas without the
need for HMDs equipped with eye trackers.

Predicting gaze scanpaths of observers when freely exploring a



VR panorama would be very interesting in many fields, including
vision, cognition, and of course, any VR-related application. Since
the seminal work of Koch and Ulman [27], many researchers have
proposed models of human gaze when viewing regular 2D images on
conventional displays (e.g., [3, 18, 32, 60]). An important element to
derive such models is gaze statistics, and whether those found in our
VR setup are comparable to the ones reported for traditional viewing
conditions; this would inform to what extent we can use existing gaze
predictors in VR applications, or be useful as priors in the development
of new predictors. Our data can be of particular interest to build gaze
predictors using just head movement as input, since head position is
much cheaper to obtain than actual gaze data.

Our data may still be insufficient to train robust data-driven beha-
vioral models; we hope that making our scenes and code available
will help gather more data for this purpose. We also hope it will be a
basis for people to further explore other scenarios, such as dynamic or
interactive scenes, the influence of the task, or the presence of motion
parallax, etc. These future studies could leverage our methodology and
metrics, and build upon them for the specific particularities of their
scenarios. It would be interesting to explore how behavioral models
could improve low-cost but imprecise gaze sensors, such as electroocu-
lograms. Future work could also incorporate temporal consistency for
saliency prediction in videos, or extend it to multimodal experiences
that include audio.
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