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Fig. 1. We add parallax for 360◦ videos, for viewing in virtual reality head-mounted displays (HMDs). This translates into a more
compelling viewing experience, as our user studies confirm. Left : Captured point of view as shown in the HMD (top), and a novel
view as the user moves their head (bottom); this novel view is generated with our method and was not captured by the camera.
Right, top row : Straightforward approaches based on image-based rendering do not work well due to suboptimal quality of the depth
information. Original view (left) captured with the GoPro Odyssey, and a close-up of novel views generated with three different methods
(right): (A) naive reprojection of RGB information, (B) naive handling of disocclusions, and (C) our method, relying on a robust layered
representation. Right, bottom row : We also propose a depth map improvement step to correct for errors that have a high impact on
reprojection. Original view (left) from a YouTube video (https://youtu.be/iWyvlkWYXhY), and close-ups showing depth maps and a
displaced view computed with them, for the original estimated depth map (top row), and for our improved depth map (bottom row).

Abstract—We present a method for adding parallax and real-time playback of 360◦ videos in Virtual Reality headsets. In current video
players, the playback does not respond to translational head movement, which reduces the feeling of immersion, and causes motion
sickness for some viewers. Given a 360◦ video and its corresponding depth (provided by current stereo 360◦ stitching algorithms), a
naive image-based rendering approach would use the depth to generate a 3D mesh around the viewer, then translate it appropriately
as the viewer moves their head. However, this approach breaks at depth discontinuities, showing visible distortions, whereas cutting the
mesh at such discontinuities leads to ragged silhouettes and holes at disocclusions. We address these issues by improving the given
initial depth map to yield cleaner, more natural silhouettes. We rely on a three-layer scene representation, made up of a foreground
layer and two static background layers, to handle disocclusions by propagating information from multiple frames for the first background
layer, and then inpainting for the second one. Our system works with input from many of today’s most popular 360◦ stereo capture
devices (e.g., Yi Halo or GoPro Odyssey), and works well even if the original video does not provide depth information. Our user
studies confirm that our method provides a more compelling viewing experience than without parallax, increasing immersion while
reducing discomfort and nausea.

Index Terms—Immersive environments, Virtual Reality video.

1 INTRODUCTION

With the growth of Virtual Reality (VR) headsets, stereo 360 video
is becoming increasingly popular. Existing devices, including the
GoPro Odyssey, Yi Halo, Vuze VR, Jaunt ONE or Facebook Surround
360, capture video that is converted to a stereo 360◦ video format
for viewing in headsets. This video creates a feeling of “immersion”
because it fills the viewer’s field of view. However, this representation
does not support motion parallax when the viewer shifts their head
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translationally. This experience is unnatural, can break the sense of
immersion, and can cause discomfort and even nausea in some users,
due to the mismatch between the visual and vestibular systems [67].
Even if the viewer attempts to stay static and carry out only rotational
movements, accidental motion is likely to happen, leading to potential
discomfort and sickness. Viewers that can display imagery with rotation
and translation are commonly referred to as 6-DoF; correspondingly,
rotation-only viewing is referred to as 3-DoF.

HMD-ready demos exhibiting motion parallax in synthetic and real
world scenarios, such as Welcome to Light Fields [52], have shown
the potential of 6-DoF viewing. Experiments have been carried out
comparing 3-DoF and 6-DoF viewing, showing the importance of mo-
tion parallax to the viewing experience in VR, and how 6-DoF viewing
leads to higher immersion and realism, and lower discomfort [57, 67].
At present, however, there is no practical system for capturing general-
purpose 6-DoF video. While a number of research prototypes have been
demonstrated, most of them only work for static scenes (e.g., [32, 48]),
require impractical amounts of video storage for a reasonable range
of head motion [58], require complex indoor setups and only cap-
ture actors within a constrained volume [71], or, else are still only
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proofs-of-concept that—as well as can be determined from available
information—seem to require large, expensive setups [36].

We introduce a new approach to adding motion parallax to footage
recorded by existing 360◦ video capture systems. We first obtain a suit-
able depth map from the input video. An initial depth can be provided
by existing 360 stitching algorithms (e.g., [1]), or we can estimate it
using an off-the-shelf deep learning algorithm [27]. A baseline ap-
proach would be to directly create a 3D scene from this initial depth
map. However, because conventional depth map algorithms are not
designed for reprojection, the baseline approach creates objectionable
artifacts (Figure 1), including lack of disocclusions, jagged boundaries,
and lack of temporal coherence.

Our approach is as follows. We introduce a three-layer representation
of the video for playback, which allows disocclusions for both moving
and static scene elements (Section 3.1). The input video plus depth
is used as the foreground layer. Object silhouettes are detected and
cut in this layer, to allow for disocclusions. One background layer
is computed by inpainting behind static occluders, and the other by
background subtraction behind moving occluders. Since the depth maps
provided by existing algorithms are not suitable for reprojection [68],
we also introduce an algorithm that preprocesses such depth maps
to minimize visible artifacts (Section 4). The algorithm cleans up
occlusion boundaries and improves temporal coherence, leading to
more visually plausible and appealing results.

Our approach provides a drop-in 6-DoF viewing experience that
works for a wide class of existing 360◦ video available today, without
any new capture or hardware requirements; we only assume that the
video is captured by a static camera, which is common practice to
minimize sickness during viewing. Although our method is not com-
pletely free of artifacts, we have performed three different user studies
(Section 5), which confirm that it creates a more natural, compelling
viewing experience, while also reducing the feeling of sickness or dis-
comfort compared to traditional 3-DoF viewing. We provide source
code for both our preprocessing algorithm and our real-time layered
video viewer1.

2 RELATED WORK

Image-based rendering. Since the seminal works on image-based
rendering [8, 19, 29, 50, 59], a number of IBR techniques have emerged
that differ mainly either in the characteristics of the input data, or the
type of scene representation used. Our work is related to this field, but
our input differs substantially from what these works typically use.

A large group of works seek to allow free viewpoint navigation per-
forming reprojection aided by some geometry proxy, often employing
multiview stereo to obtain a 3D reconstruction [13,19,23]. To compen-
sate for potential errors or sparsity in the 3D reconstruction, Goesele
et al. [28] use ambient point clouds when rendering areas of the scene
that are poorly reconstructed, while Chaurasia et al. [14] use variational
image warping to compensate for sparse 3D information. Baricevic
et al. [3] densify sparse depth information from monocular SLAM
via an optimization approach in a live scene, i.e., without pre-capture
or preprocessing. All these works are targeted at multiview setups
with a relatively large baseline, while our input is an RGBD video
panorama. Still, we use some ideas from these works, like the need for
soft visibility maps at depth boundaries to reduce artifacts [23, 53].

Some works do not rely on an explicit 3D reconstruction, but rather
on dense image correspondences, for view interpolation [46,49]. In con-
trast to them, we have the ability of generating novel unseen viewpoints,
rather than interpolating between existing ones. Others augment well-
known RGB inpainting methods [16] with depth-based terms [9, 10]
for disocclusion filling in novel views; we partially rely on inpainting,
but will show that simpler methods are better suited for our purposes.

Learning-based approaches have also been used to interpolate novel
views, e.g. [26], or for light field acquisition [38], including light
field video [69]. Closer to ours is the recent work by Zhou and col-
leagues [70] for wide-baseline stereo pair generation from narrow-
baseline stereo input, using a deep neural network that infers a multi-

1http://webdiis.unizar.es/∼aserrano/projects/VR-6dof

plane image representation of the scene; however, they do not handle
dynamic scenes and their method is limited to stereo pairs.

The use of a layered representation is common in IBR approaches.
Zitnick et al. [71] use a two-layer representation, in a system with
a fixed, wide-baseline camera rig that allows them to obtain cleaner
depth boundaries and mattes for areas near depth discontinuities while
handling video. A more recent example is the work of Hedman et
al. [32], who also use a two-layer representation for rendering. Follow-
up work [33] improves reconstruction quality and computation times
leveraging dual-lens cameras present in current high-end mobile de-
vices. These two methods capture high-fidelity static 3D scenes, but
they are not suitable for dynamic scenes nor video since the scene
needs to be captured from many different points of view (some of
the examples they provide in the dataset require dozens of images as
input). In contrast, our approach allows automatic 6-DoF capture for
dynamic scenes and videos, being agnostic to the capture hardware,
including capture setups with a very narrow baseline. Another interest-
ing approach is that of Philip and Drettakis [54], in which multi-view
inpainting is performed on an intermediate representation formed by
locally planar spaces shared between the input images; the work fo-
cuses on inpainting large unknown regions in large datasets with wider
baselines than ours.

Finally, a series of works perform novel view synthesis to create
content for autostereoscopic displays from stereo pairs, via image-
domain warping [63]; using a steerable pyramid decomposition and
filtering also used in motion magnification [21]; dealing with artifact
detection and removal in synthesized stereo pairs [20]; or focusing on
real time performance during the conversion [39]. In our case, the novel
views we create can be from any viewpoint and do not follow a certain
structure as they usually do in autostereoscopic displays.
6-DoF viewing. A number of works have targeted creating a full 6-
DoF experience in VR. Thatte et al. [66] propose a novel data represen-
tation to support motion parallax, depth augmented stereo panoramas,
but it requires a specific capture setup, different from that of commonly
available footage. Huang et al. [35] take as input a monoscopic 360◦
video with a moving camera, and, after doing a 3D reconstruction of
the scene, are able to generate novel viewpoints by warping the initial
360◦ footage. They require, however, that the movement of the camera
in the input video provides sufficient baseline for the 3D reconstruction.
Visualization of real 360◦ scenes with head motion parallax is provided
by the work of Luo et al. [48]; however, they require that a robotic
camera arm captures the scene at specific positions, uniformly sampling
a sphere in latitude and longitude, and they cannot handle dynamic
scenes. Also addressing the problem of 6-DoF 360◦ content from light
fields, Hinds et al. [34] proposed a benchmark for assessing light field
compression techniques in the context of a view synthesis pipeline.

There has also been work on applying view-dependent texture map-
ping [18, 19] to speed up the rendering of the stereo pair in VR setups,
assuming the input is a set of captured images suitable for a multiview
stereo technique [56]. The recent work of Koniaris et al. [41] provides
head motion parallax and view-dependent lighting effects in 360◦ con-
tent, but is targeted at synthetic content: the method takes as input a
number of pre-rendered views of the scene of interest, as opposed to
our real-world captured videos. Finally, Schroers et al. [58] presented a
system that enables horizontal motion parallax from footage captured
with a 16-camera rig: They reconstruct a dense light field panorama
from a sparse number of input views. There are, however, three main
differences with respect to ours: First, they require a calibrated camera
rig for capture; second, they require a much larger amount of storage,
since they need to store a separate 360◦ video stream for every discrete
viewpoint; and third, they only provide horizontal parallax, which has
been shown to yield a significantly worse viewing experience than full
6-DoF parallax [67].

In contrast to these works, we take as input a monoscopic 360◦ video
of a scene captured from a static viewpoint, as given by typical 360◦
capture systems, plus a depth map obtained from the recorded footage.
To our knowledge, only the work of Sayyad et al. [57] targets providing
6-DoF from a single panorama, but they do it via user intervention
through an interactive modeling tool that allows the user to modify the
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geometry directly in VR; in contrast, we target an automatic approach
that can also be suitable for video and dynamic scenes.

Depth map improvement techniques. Due to small baselines, spec-
ular or transmissive surfaces, or moving objects, among other causes,
depth maps estimated from multiple images can be imprecise and con-
tain artifacts. Image-guided filtering techniques provide depth maps
that are well-aligned with the corresponding RGB edges; examples
of local methods that can be used include bilateral filtering [4, 15],
joint bilateral upsampling [42], guided filtering [31], or multilateral
filtering [12]. However, RGB discontinuities may lead to depth artifacts
that become clearly visible in 6-DoF viewing.

Global optimization methods can also be used for depth refinement.
Levin et al.’s colorization based on optimization [44], which propagates
scribbles according to the color affinity in the input image, has been
applied to depth maps [32]. Image matting can also be used to propagate
input scribbles [45]. These methods obtain good results for hole filling
and sharp input edges, but this is not always the case in estimated depth
maps from camera rigs or single-image methods.

We propose here a depth refinement technique that is inspired by
these works but tailored for our end goal. For a more in-depth review
of related techniques, we refer the reader to a recent survey on hole
filling strategies for depth map completion [2].

There is another line of works that try to minimize contour artifacts
when reconstructing depth from stereo or multiview content [6, 25, 61].
However, our input already includes a depth estimate along with the
RGB frames, while building it from scratch applying these existing
methods would likely fail due to the small baseline and minimal over-
lapping regions of current 360◦ cameras; for example, the work of Shan
et al. [61] requires thousands of images. Further, this would limit our
generality, since it would not work with monocular footage. Addition-
ally, the works of Feris et al. [25], and Birchfield and Tomasi [6] are
not intended for reprojection, and thus they do not consider geometry
appearance from novel points of view.

3 LAYERED VIDEO REPRESENTATION

The input to our method is a 360◦ video, with RGB and depth values
at each pixel. These can be initially provided by existing stitching
algorithms [1], or estimated with a CNN [27]. Instead of using this
depth information as is, which leads to visible artifacts when enabling
6-DoF, we first preprocess it and make it suitable for reprojection (see
Section 4).

The most basic reprojection algorithm is to convert the input video
into a spherical triangle mesh, mapping each pixel to a vertex with the
given RGB value, and 3D position as determined by the depth map,
i.e., given a pixel at coordinates (θ ,φ) on the equirectangular image,
and depth d, map it to spherical coordinates (d,θ ,φ). We use input
videos with resolution 1024×2048, so this corresponds to a mesh of
1024×2048 vertices. Then, this mesh can be rendered at runtime, as
the viewer moves their head. However, this naive reprojection approach
produces very noticeable artifacts at disocclusion boundaries, as shown
in Figure 1, close-up (A): As the viewer moves away from the center of
the projection, the triangles of the mesh that correspond to disocclusion
boundaries incorrectly connect foreground and background elements,
rather than revealing disoccluded regions. To fix this, one might attempt
to identify disocclusion boundaries, say, by depth differences, and then
break the mesh at those boundaries. However, this naive handling
of disocclusions can lead to jagged silhouette boundaries or missing
information due to inaccuracies in the boundary estimation, in the depth
map, or in the correspondence between depth and RGB edges, as shown
in Figure 1, close-up (B).

We do employ a mesh-based approach, but making use of a layered
representation that allows us to fix the aforementioned issues of missing
information and jagged silhouettes in disocclusion boundaries. We
describe this representation first (Section 3.1), then how it is computed
(Section 3.2), and finally, how this representation is used to render the
scene during real-time viewing (Section 3.3).

Fig. 2. Example showing the layers in our scene representation. Top row:
Sample RGB frame. The inset depicts a simple illustration of our three
layers, showing which layer the user will see from different points of view
(for a more detailed explanation see Figure 3, left). Middle row: For a
close-up region, we show RGB of each layer (foreground, extrapolated,
and inpainted). Bottom row: For the same close-up region, we show the
associated depth map, and, for the two layers where it is present, the
associated opacity map.

3.1 Scene representation

Our scene representation is designed to display the RGBD video with
clean disoclussion boundaries at object silhouettes. In order to fill
holes (missing information) in disocclusions, we use both background
subtraction and inpainting where appropriate. We seek, as much as pos-
sible, to use the original video for rendering, e.g., rather than splitting
objects in the video into separate layers. Finally, we wish to allow for
real-time playback.

In order to achieve these goals, we introduce a layered represen-
tation. Our representation extends previous layered IBR approaches
(e.g., [32,71]); specifically, we extend the representation to three layers:
a dynamic foreground layer, and two static background layers. The
foreground layer is a mesh generated from the RGB video and its asso-
ciated depth, together with an extra per-frame opacity map (α̂F ) used
to control the opacity of the mesh at disocclusion boundaries. This
layer is thus stored as an RGB video with an associated depth video
and opacity video. There are two static background layers (which we
term the extrapolated layer and the inpainted layer, respectively), used
to fill disocclusion holes created when motion parallax takes place as
the viewer moves their head. The extrapolated layer contains informa-
tion for static background regions that are, at some time, occluded by
moving objects (e.g., behind a moving person or car); hence, it can
be computed by background subtraction. It also has a static opacity
map (α̂E ) associated with it, again used to control transparency of this
mesh when disocclusions occur. The layer is stored as an RGBA image
and associated depth map. The inpainted layer contains information to
fill-in disocclusions of areas corresponding to static background regions
occluded by static objects. Those areas were thus never observed by
the camera, and so must be computed by inpainting. Since this is the
rearmost layer, it does not have an associated opacity map, and is stored
as an RGB image and associated depth map. An example of these three



Fig. 3. Left: Illustration explaining our three-layer representation. Each
circle represents a different pixel, and its color indicates the layer it be-
longs to. Lines represent mesh connectivity (i.e., faces), and potential
disocclusions are represented with dashed lines. The foreground layer
shows a moving object and the extrapolated layer a static one. Some
simple cases can be handled with only two layers (viewpoint A; black
dotted lines represent a single ray for a given viewpoint). In others, how-
ever, three layers are required because depending on the viewpoint we
the user should see the foreground layer (viewpoint B), the extrapolated
layer (viewpoint C), or the inpainted layer (viewpoint D). Right: Illustration
showing the relationship between face normals and potential disocclu-
sions. The angle between these normals and the viewing direction from
the center of projection (dashed lines indicate this direction for a number
of faces) is used to compute the initial opacity map of a layer (OF ). We
identify potential disocclusions as mesh triangles with angles close to
90◦. Angles due to foreshortening will be narrower than angles belonging
to disocclusions, since depth discontinuities are smoother. Quantization
errors will produce sparse angles close to 90◦.

layers is shown in Figure 2, and a visualization is given in Figure 3.
Given this representation, rendering the scene at a given time index

entails converting the three RGBD images to three meshes as described
above, and rendering each in the same 3D space. While the viewer’s
head remains at the center of projection, only the foreground layer will
be seen. When the viewer’s head moves from the camera center, the
background layers will be visible at disocclusions. To enable this, the
transparency of the foreground layer and extrapolated layer is computed
making use of the opacity maps (α̂F and α̂E , respectively). Section 3.3
describes rendering of the meshes during real-time playback.

Note that the static background layers cannot be merged because
both layers may contain information in a given (θ ,φ) direction. For
example, suppose a person walks in front of a static car. From the
camera center, three layers overlap: the moving person, which will be
rendered in the foreground layer; the static car, which must be rendered
in the extrapolated layer, since it is visible in other video frames; the
scene behind the car, estimated by inpainting into the inpainted layer.
This is illustrated in Figure 3 (left): depending on the user’s point of
view as they move, we will need to show either the foreground layer
(viewpoint B), the extrapolated layer (viewpoint C), or the inpainted
layer (viewpoint D).

3.2 Layer computation
We now describe how the layered representation is computed, including
the three layers and the opacity maps.

3.2.1 Foreground layer
The foremost layer is dynamic and is the only one visible as long as
the viewer’s head does not move from the center of projection. It is
directly generated from the original RGB video, together with the pre-
processed depth (the pre-processing of the original depth is described
in Section 4).

The opacity map stores, for each vertex of the foreground layer
mesh, a value α̂F ∈ [0..1] that will be used to control the opacity of the
layer at runtime (Section 3.3). The idea is that, as the viewer’s head
moves from the center of projection, and disocclusions occur in certain
areas, the foreground layer fades in those areas to allow visibility of the
back layers. Thus, this map should store which vertices are likely to
belong to disocclusion boundaries. Intuitively, disocclusion boundaries
will be found at parts of the mesh whose normals are approximately

perpendicular to the viewing direction from the center of projection,
since that is indicative of a sharp depth discontinuity and thus a potential
disocclusion boundary (see Figure 3, right). Thus, by storing the
angles between face normals and the view direction from the center
of projection (in practice, the dot product between these two vectors)
we would in principle have an initial foreground layer opacity map
per frame, OF . This initial opacity map, which is different for every
frame of the input video, is shown in Figure 4(b) for a sample frame.
Note that we leverage the GPU rendering pipeline, and compute the
dot product in the fragment shader, i.e., with fragment normals (given
the topology of our meshes, for each layer there is a single fragment
per pixel of the input frame).

However, as also shown in Figure 3 (right), angles close to perpen-
dicular can also be the consequence of foreshortening, or the result of
quantization errors in the depth map. To minimize the impact of these
situations, we apply to this initial opacity map OF a closing morpho-
logical operation to remove subtle orientation changes due to depth
artifacts, followed by a thresholding operation to remove smooth depth
variations (most likely due to foreshortening or quantization effects),
and then blur the result to provide a smooth transition at boundaries.
Finally, a logistic function is applied in order to remove intermedi-
ate values that can cause ghosting, while still allowing for a smooth
transition. Thus, the final opacity map of the foreground layer, α̂F , is
computed as:

α̂
F = S(G~ (τ(OF •K))) (1)

Operator • denotes the closing morphological operation, K is a disk
kernel (radius of 2), τ denotes the thresholding operation (we use 0.8
as a threshold in all cases since OF is in the range [0..1], 1 meaning
perpendicular orientation), G is a Gaussian blur operator (kernel size
of 7×7), and S is a logistic function (centered at c = 0.5, and with a
slope k = 8), shown in Eq. 2. Note that we apply all the operations in
Eq. 1 on the complement of OF , and then take the complement of the
result to yield α̂F .

S(x) =
1

1+ e−k(x−c)
(2)

While we define our parameters heuristically, we use the same param-
eters for all input videos and all the different stitching methods and
cameras we tested. Figures 4(c) and 4(d) show the result of apply-
ing these operations, while in the supplementary material we include
individual results for each of the operations described.

3.2.2 Extrapolated layer
This layer is static, and essentially contains a version of the scene with
moving objects removed. We first compute its depth map, by taking, for
each pixel, the n largest depth values of the foreground video frames,
and compute their median to obtain a robust maximum depth (in all
our tests, n = 15). Setting the depth to this robust maximum ensures
that the observed background layer will remain behind the foreground
layer, and thus invisible from the original camera viewpoint. To obtain
the corresponding RGB values, we take, for each pixel, the RGB value
associated to the selected depth value.

The computation of the opacity map for the extrapolated layer, α̂E ,
is analogous to that of the foreground layer opacity map previously
described. The only difference is that in this case we use the mesh of
the extrapolated layer when computing the angles between the mesh
normals and the view direction from the center of projection to yield
the initial opacity map OE . As such, this opacity map does not need to
be computed per frame of the input video, but just once.

3.2.3 Inpainted layer
This is the backmost layer; it is also static, and contains inpainted
regions in areas behind static objects that can become visible due to
disocclusions. We obtain this layer by identifying which regions can
become disoccluded, and inpainting them. The identification is done
based on the opacity maps, whose computation is described below.
A theoretical derivation to compute the maximum parallax that the
layers may be subject to, and thus the largest area requiring inpainting,
can be found in the supplementary material. For inpainting we use a



Fig. 4. Example showing the computation of the opacity map. (a) Depth map of the foreground layer for a given frame of the video. (b) Initial opacity
map OF . (c) Final opacity map α̂F . (d) Final opacity map shown in (c), overlaid on top of the corresponding RGB image. The orientation values OF

shown in (b) are too noisy to provide smooth opacity values, as they include information not only from potential disocclusions, but also from areas
with foreshortening and quantization errors. We process these raw values (see text for details), and obtain a clean opacity map α̂F , shown in (c), that
smoothly matches potential disocclusion boundaries in the RGB image, shown in (d).

well-established PDE-based inpainting method [5] that smoothly in-
terpolates the unknown values. We favor smoothing approaches over
patch-based ones, since, upon failure, the latter are prone to produce
very prominent local artifacts that are very distracting during playback,
making our smooth approximation preferable for our particular appli-
cation; a comparison of our result to a patch-based approach [43] is
shown in Figure 5.

Fig. 5. Left: RGB panorama. Right: Corresponding inpainted layer
obtained using a patch-based approach [43] (top), and our result using
a spring metaphor-based method [5] (bottom). The patch-based ap-
proach produces local artifacts that are very prominent when visualized
on an HMD. While the spring-metaphor inpainting yields a blurred ap-
proximation in the area to inpaint, for our application this smoothness is
preferable.

Fig. 6. Comparison of two different methods to modulate the opacity
values α̂F as a function of distance to the center of projection to obtain
αF . Left: Original view as seen in the HMD. Right: Close-up of a
displaced view with two different modulations: linear interpolation (left),
and blending based on a logistic function (right). Aggravated ghosting
results from using a linear interpolation as a function of distance.

3.3 Real-time playback

During playback, the three layers are rendered as meshes. When the
viewer is at the center of projection, only the foreground layer should
be visible. As they move away from the center, we need to show infor-
mation from the other layers as well, depending on the disocclusions
that take place, as given by the precomputed opacity maps.

To model this behavior, at runtime, we modulate the opacity of each
layer given by the opacity maps with a sigmoid function of δ , the
current distance between the viewer’s head position and the center of

projection. Specifically, the run-time foreground layer opacity αF is
given by:

α
F = S(δ )α̂F +1−S(δ ), (3)

where S(·) is the function shown in Eq. 2, with k = 30 and c = 0.15 me-
ters for all scenes tested. The run-time extrapolated layer opacity αE is
obtained in an analogous manner, using its corresponding precomputed
opacity map α̂E . Note that, in this way, for δ → 0 the opacity of the
layers tends to one (i.e., only the foreground layer is visible). As δ

increases, the opacity of the layers is given by the opacity values stored
in the pre-computed opacity maps. We choose blending with a logistic
function (as opposed to using, e.g., a linear interpolation) since overly
smooth transitions tend to result in aggravated ghosting, as shown in
Figure 6.

4 DEPTH IMPROVEMENT FOR MOTION PARALLAX

This section describes the depth map preprocessing that we perform, in
order to improve scene appearance at boundaries.

Our method relies on depth information from the scene. For scenes
where a depth map is provided, such as output by a 360◦ stitching
algorithm [1], we can use the provided depth map. Otherwise, we use
an off-the-shelf neural network depth estimation algorithm [27].

However, the depth maps provided by existing algorithms are not op-
timized for reprojection, as also noted by Waechter and colleagues [68].
For example, both stitching accuracy and benchmark scores are rela-
tively insensitive to slight variations in the pixels around object silhou-
ettes, since they are a tiny subset of any depth map. But small errors in
the silhouette depths leads to extremely objectionable ragged bound-
aries when reprojecting to new viewpoints. On the other hand, small
depth errors in object interiors are hardly noticeable. Other artifacts
include depth bleeding across silhouettes, strong discontinuities in what
should be continuous surfaces, and temporal inconsistencies (Figure 7).
This is a general problem that applies to all current approaches to depth
map estimation.

Fig. 7. Examples of artifacts in the input depth videos that hamper the
viewing experience, and our resulting improved depth. (a) Bleeding
artifacts around object boundaries. (b) Piece-wise discontinuities in what
should be smooth gradients. (c) Strong discontinuities in what should be
a continuous surface.

Our goal in this section is then not to provide an algorithm that
improves the accuracy of the depth maps in general. Instead, we focus
on minimizing the three main sources of artifacts, thus making the
scene look much more visually plausible and appealing.



We pose improving the input depth map as an optimization problem.
The objective function has a data term (Edata), and constraints for edge
preservation (Ee), spatial smoothness (Esm), and temporal consistency
(Et ):

argmin
d

λdataEdata +λeEe +λsmEsm +λtEt , (4)

where d is the depth map of a frame of the video, d(θ ,φ); in the
following, to simplify notation, we will use an index i to denote each
(θ ,φ) pair, that is, each pixel in each equirectangular-format frame. The
optimization is solved per frame. We chose the λ values empirically
(an evaluation can be found in the supplementary material), for our
experiments λdata = 0.1, λe = 1, λsm = 0.5, and λt = 0.1. Note that
we pad both RGB and depth maps with the corresponding wrap-around
values of the equirectangular projection.

The data term ensures fidelity to the input depth values:

Edata (i) = ∑
i

wd (i)
(
d (i)− d̂ (i)

)2
, (5)

where d̂ denotes the input depth. The per-pixel weight wd (i) models
the reliability of the input data. Its aim is to reduce data fidelity along
edges, since error in the input depth is more prominent in those regions.
It is based on the local variance of the depth σ2 of each pixel i (the
higher its variance, the less reliable). Specifically: wd (i) = e−γ·σ 2

,
where γ is set to 105 for all cases, and the window size to compute σ2

is 7×7.
To enforce clean edges, we add an edge guidance term that pe-

nalizes propagation across edges by using the edge weight we (i, j),
inspired by the colorization method of Levin et al. [44]:

Ee (i) = ∑
i

(
d (i)− ∑

j∈N (i)
we (i, j)d ( j)

)2

, (6)

where j denotes pixels in a neighborhood of pixel i. Unlike Levin
et al.’s method, we use we (i, j) = τ(e(i)− e( j)), where e represents
an edge vote map and τ is Tukey’s biweight [7] (comparisons with
different functions for τ can be found in the supplementary material).
To compute the edge vote map e, we use a multiscale edge detector [22],
taking into account edge information from both the RGB image (ergb)
and its corresponding input depth map (ed), so that e = ergb + ed . As a
result, edges corresponding to a depth difference will have higher edge
vote map values, and thus lower weights (we).

Fig. 8. Depth improvement results for different variations of our opti-
mization. The first and second columns show the input RGB and depth
images, respectively. The third and fourth columns show the results using
luminance or an edge map computed from RGB as guidance. In the fifth
column we show the result when removing the smoothness term (Eq. (7))
from our optimization. As the black arrows indicate, clear artifacts remain
in all three results. The last column shows the result of our optimization.

The smoothness term acts over local neighborhoods:

Esm (i) = ∑
i

∑
j∈N (i)

wsm (i)(d (i)−d ( j))2, (7)

where wsm is the smoothness weight, obtained in the same way as the
data weight wd , by computing the local variance σ2 of the input depth
map: wsm (i) = e−β ·σ 2

. In this case σ2 is computed within a 3× 3
neighborhood, and we set β = 103 for all cases. The weight is lower

the higher the variance within a local neighborhood, so that smoothness
is only imposed in regions where there are no abrupt changes in depth.
Figure 8 shows the influence of each term in our improved depth, along
with the result using luminance or RGB values.

Finally, the temporal consistency term is defined as:

Et (i) = ∑
i

wt (i)
(
d (i)−ψ prev→cur

(
dprev (i)

))2
, (8)

where ψ prev→cur (·) is a warping operator between two frames,
implemented as the variational robust optical flow method [47].

The weight wt (i) is computed as: wt (i) = max
(

ε,

√
u(i)2 + v(i)2

)
,

where ε is set to 10−4, and u(i) and v(i) correspond to horizontal and
vertical flows at pixel i. This weight is higher if there is larger motion,
since temporal artifacts would be more noticeable.

Since all the terms are l2 norms, we solve Eq. (4) with the conjugate
gradient method. For time efficiency, we first downscale the input
RGB and depth to 80% of the original size in each dimension, then we
upscale the refined depth to the original resolution, followed by a fast
bilateral filtering [15]. Figure 9 compares our depth refinement step
with other common existing approaches; our method provides cleaner
depth maps, which are a key factor when adding parallax cues.

Fig. 9. Comparison of our depth improvement against guided filter [31],
and colorization [44]. Since the former is guided by an RGB image, it
leads to artifacts similar to those shown in Figure 8, whereas the latter
tends to over-smooth the result.

5 EVALUATION

Recents studies suggest that 6-DoF provides an overall better viewing
experience (e.g., [67]). To validate whether the results achieved with
our method also provide an advantage over conventional 3-DoF 360◦
video viewing, we perform three different user studies using 360◦
stereo videos with and without motion parallax. Note that for both
conditions (3-DoF and 6-DoF) we display stereo views. Specifically,
we want to answer two key questions: (a) Does our added motion
parallax provide a more compelling viewing experience?, and (b) does
it reduce sickness? For the first question on preference, we designed
two experiments, carried out first and last. In between, we performed
the sickness experiment. Since the naive handling of disocclusions
(Figure 1, close-up (B)) yields very noticeable artifacts, we chose not
to include it as a condition in our studies.

All 360◦ videos were shown on an Oculus Rift connected to a PC
equipped with an Nvidia Titan, running at 90fps. Similar to VR appli-
cations that use a limited tracking volume, we constrain the maximum
displacement from the center of projection using visual cues. To first
find what makes a reasonable range of casual, accidental motion, we
carried out an initial study in which we registered head movements
when watching our 6-DoF 360◦ content. We define accidental motion



as involuntary head translations that will occur during rotational move-
ments in a natural exploration of the scene. Figure 10 (left) shows the
resulting histogram, measuring the Euclidean distance to the center
of projection 90 times per second; we observe that most movement
is clearly constrained to a certain range. Based on this histogram,
we set two thresholds at 20 and 35 cm. When the first threshold is
surpassed, blue latitude circles are overlaid to the video content, and
the image progressively fades to gray (see Figure 10, right); once the
second threshold is surpassed, the image fades to black. For fairness,
when comparing between our method and conventional 3-DoF viewing,
we added the visual cues for constraining the displacement to both.
Participants were informed about this visualization previously to all
experiments.
Participants. A total of 24 participants (8 female, 16 male), ages 18
to 20, took part in the experiment. The same subjects participated in
the three studies, carried out on three separate days to avoid fatigue and
accumulation effects. They voluntarily signed up for our experiments,
were naive with respect to their purpose or our technique, and were
paid 25$ upon completion of the experiment on the third day. They
were first asked to answer a brief questionnaire about their previous
use of HMDs and VR content: 14 subjects had no previous experience
with HMDs or VR content, 8 subjects had used an HMD less than 3
times before, and 2 subjects had used an HMD up to 10 times before.

Fig. 10. Left: Histogram of the Euclidean distance from the head position
to the center of projection during our pilot experiment. We observe that
most movement is limited to a certain range. The two gray lines indicate
the two thresholds that control our visualization: at 0.2 m, blue latitude
circles appear and the scene progressively fades to gray (shown on the
right); at 0.35 m the scene fades to black.

5.1 Experiment #1: Preference (part I)
In the first experiment we evaluate whether our method provides a more
compelling viewing experience.
Stimuli. The stimuli consisted of seven 360◦ videos, covering a
variety of scene layouts, content, and motion. For each video, there
were two versions: the original one, and adding motion parallax using
our method. The videos were captured with a GoPro Odyssey and a Yi
Halo cameras, and stitched using the algorithms provided by Google
Jump Manager. We show some representative frames in Figure 11,
please refer to the supplementary material for more details. To keep
the subjects engaged, we limited the videos to 30 seconds each and,
following common practice [11, 37], participants were informed that
they would be asked a few questions about the scenes after watching
them.

Fig. 11. Example frames of the videos used for our user study.

Procedure. Each participant watched the seven videos twice, once

without (conventional 3-DoF viewing) and once with motion parallax
added with our method. The order was randomized for each video,
separated by a one-second black screen. After seeing each pair of
videos, they answered a questionnaire where they had to choose one
method or the other in terms of realism, comfort, immersion, presence
of visual artifacts, and global preference. There was also a space for
comments, allowing the participants to explain the reasons for their
answer. The whole questionnaire can be found in the supplementary
material. At the end of the experiment, a debriefing was carried out,
but participants were not told the goal nor any information about the
techniques tested in the experiment, since they had to go through two
more sessions in the next days. The whole experiment took less than
30 minutes per subject.
Results. We show in Figure 12 (left) the results for the global pref-
erence question. The videos with added parallax using our method
were preferred in six out of the seven cases. Additionally, seven users
commented about the movement and the depth being “more realistic”
with our method. Results for the other questions (realism, comfort,
immersion, and artifacts) are consistent with the global preference, and
can be found in the supplementary material.

5.2 Experiment #2: Sickness
One of the main reasons motivating our technique is the hypothesis that,
when watching 360◦ video, the absence of motion parallax may induce a
feeling of sickness or discomfort, due to the mismatch between different
sensory inputs (visual and vestibular). In our second experiment, we
set out to measure if this is the case, and if it is less prominent when
adding motion parallax with our technique.
Stimuli. The stimuli consisted of a set of 12 videos, distinct from
those in the previous experiement, but again covering a wide variety of
scene layouts and movements. The videos were captured with a GoPro
Odyssey and a Yi Halo cameras, and stitched using the algorithms
provided by Google Jump Manager. The videos lasted between 30
seconds and one minute each, for a total duration of 8 minutes and 30
seconds.
Procedure. We created two blocks with the set of 360◦ videos; the
first contains the 12 original videos without motion parallax, while the
second features motion parallax with our method. There was only a
brief pause of 200ms between videos, because we wanted to analyze
the exposure to a continuous 360◦ viewing experience. This experiment
consisted of two sessions on two different days. On the first session,
they watched one block and answered a questionnaire containing (a) the
VRSQ questionnaire (Virtual Reality Sickness Questionnaire) [40], and
(b) two yes/no questions asking whether they had experienced, at any
time during viewing, sickness, dizziness, and/or vertigo, and whether
they had experienced discomfort; please refer to the supplementary
material for the full questionnaire and details. They were also instructed
to describe the video in which they felt such symptoms. On the second,
they did the same for the other block. The order of the blocks was
randomized between participants. The participants were allowed to
stop if they needed to, but none requested to do so, and a debriefing
followed the sessions. The whole experiment took 15 minutes per
session.
Results. The results of this experiment indicate that our method does
indeed help in reducing sickness by enabling motion parallax: while
17 out of the 24 participants reported symptoms of sickness, dizziness,
and/or vertigo while watching the videos without motion parallax, only
5 experienced these symptoms with our method. Moreover, none of
the subjects reported visual discomfort with our method, while 4 users
experienced discomfort with conventional 3-DoF viewing. The results
for the VRSQ questionnaire were inconclusive, possibly due to the
short duration of the viewing session and the lack of a physical task (the
authors of the VRSQ questionnaire [40] report sessions of 90 minutes,
and different target selection tasks throughout the session).

5.3 Experiment #3: Preference (part II)
In the last experiment, we repeated the procedure of Experiment #1
but this time disclosing in advance the difference between the two



Fig. 12. Vote counts for the global preference question in Experiment
#1 (left) and Experiment #3 (right), for our 6-DoF method (purple), and
the conventional 3-DoF (orange). The x-axes show the different videos
tested. In Experiment #1, the videos with added parallax were preferred
in six out of the seven cases, with a strong preference in two cases. In
Experiment #3, our method was strongly preferred for five out of the six
videos.

versions of each video (motion parallax). The goal was to test if,
once the presence of motion parallax is explicitly known, users would
find the viewing experience more or less enjoyable than before, and
whether this altered their viewing behavior. We first played a video on a
conventional desktop display showing a recorded HMD viewing session
with and without motion parallax, verbally explaining the difference.
Participants then put on the HMD to view the same scene, asking them
to experiment moving their head. This process went on until we were
sure that the participants understood the differences between the two
viewing modes. This scene was only used for the explanation and was
not included in the test set. This third experiment was carried out the
last day, upon completion of the two previous experiments, to ensure
that during the previous sessions they were unaware of the differences
between the methods. Note that participants were still not aware that
we were testing a new method, only two different viewing options.
Stimuli. Each subject was presented with a random subset of two
videos from Experiment #1 (not including the one used during the
explanations). Each video was thus viewed and evaluated eight times.
Procedure. After the initial explanations, the procedure was the same
as Experiment #1. Since each subject only watched four videos from
two scenes, the total duration of this experiment was 10 minutes.
Results. As Figure 12 (right) shows, our method was strongly pre-
ferred for five out of the six videos, with no clear preference for the
sixth. Furthermore, several participants verbally expressed and con-
firmed their preference, commenting that our method provided “a more
realistic 3D experience”, that it ”greatly helps the feeling of immersion”,
and that “the movement is closer to that of the real world”.

5.4 Analysis of viewing behavior
To gain additional insights about the possible influence in viewing
behavior of enabling motion parallax, we have analyzed the differences
in head movement. For each trial in Experiments #1 and #3, we aggre-
gated the distance from the head to the center of projection across the
total viewing time, and performed a dependent t-test to compare the
means of the distributions with and without motion parallax. We have
found a statistically significant (t(209) = 2.395, p = 0.018) difference,
indicating that, on average, users displace their head 4.3 cm more every
second when 6-DoF are enabled. A possible explanation is that motion
parallax allows for a more natural viewing of the scene, and thus fosters
exploration. This may be also indirectly influenced by the significant
reduction in sickness reported in Experiment #2.

We further analyzed head movement for comparing head move-
ment differences between Experiment #1 and Experiment #3 (i.e.,
before/after explaining the differences between the methods). We
followed the same procedure as in the previous analyses, and we found
a statistically significant (t(83) = 3.484, p = 0.001) difference in the
means. On average, users displaced their head from the center 13.46 cm
every second more after knowing the differences between the methods.
This would offer an explanation for the difference in preference votes
with respect to Experiment #1.

Last, we analyzed separately head movement in Experiment #2,
since the nature of this experiment was different from the other two.
We followed the same procedure, and found that the results are con-
sistent: there was a statistically significant (t(275) = 3.352, p = 0.001)
difference, with users moving their head from the center 4.05 cm more
with our method than with conventional 3-DoF viewing.

6 RESULTS

We have tested our method in a variety of scenarios providing differ-
ent kinds of input, including the challenging case of capture systems
that do not yield depth maps. This is particularly important, since
monocular 360◦ cameras (e.g., the Ricoh Theta) are more affordable
and widespread than more sophisticated camera rigs. In the absence
of an input depth map, we first use a Convolutional Neural Network
(CNN) to estimate per-frame depth maps from monocular RGB [27];
however, the depth map from the CNN is not of sufficient quality for
our purposes, and lacks temporal consistency. Our depth improvement
stage significantly increases the quality of the final depth, including
temporal coherence, thus enabling motion parallax even from such
limited input.

We run the preprocessing of our input RGBD videos in a standard
PC equiped with an Intel i7−3770 processor (up to 3.90 GHz). The
processing time (on average) for our videos (resolution of 2048×1024
pixels) in a single core is: 7.71 seconds per frame for the depth improve-
ment step, 762 miliseconds per frame for extracting and processing
the opacity maps, 319 miliseconds per frame for computing the extrap-
olated layer, and 52.66 seconds (total) for computing the inpainted
layer. The storage overhead adds to the original RGBD video, two
static RGBD images (extrapolated layer and inpainted layer), a 360◦
video stream with the opacity map corresponding to the foreground
layer, and an additional image corresponding to the opacity map of
the extrapolated layer. After this processing step, our system runs
in real time, providing the 90fps recommended for a satisfactory VR
experience.

To test how well our method performs given different input depth
maps from different capture systems, this section includes results from
the GoPro Odyssey and Yi Halo cameras, both stitched with Google
Jump Manager (Figures 1 and 15), from Facebook x24 (Figure 14), and
from monocular videos from different sources with estimated depth
(Figures 1 and 13). As discussed in Section 4, we remind the reader
that the depth maps produced by these methods have not been designed
to help generate motion parallax effects; as such, they lead to obvious
geometric distortions when generating novel views, due mainly to
their ragged edges, the presence of holes, and temporal inconsistencies.
As an example, Figure 1 uses Google Jump Manager algorithm for
stitching and depth generation: however, distortions are still obvious
in the novel views (rightmost scene, insets A and B) before applying
our method (inset C). Figure 14 shows a result from Facebook x24: our
depth refinement and smooth disocclusion handling method leads to
the satisfactory computation of novel views.

Three more results are shown in Figure 15 (more results available
in the supplementary material), depicting a variety of scenes. For each
result, we show a view from the center of projection, and a displaced
view leading to disocclusions. In each of the scenes we highlight
regions illustrating the added parallax. Last, we further illustrate the
use of layers in Figure 16, where, given a displaced view, we color-code
the pixels rendered from each of the three layers.

7 DISCUSSION AND CONCLUSIONS

We have presented here a technique to enable head motion parallax in
360◦ video, thus enabling 6-DoF viewing of real-world capture footage.
We have designed our method to be independent of a specific hardware,
camera setup, or recorded baseline, showing examples from different
common 360◦ capture systems, including depth estimated from scratch
by a neural network.

Throughout the paper we assume that each RGB (and depth) frame
is a monocular panorama in equirectangular projection, but other pro-
jections (such as cube map) are also possible.



Fig. 13. Result using monocular video without depth as input. We show a representative frame (left), details of the initial estimated depth [27] and our
improved depth (middle), as well as the corresponding result when generating a novel view (right). Our method yields minimal distortions even in
the presence of such suboptimal input. The scene was taken from a previously existing short clip (dataset from [60]); we use only a 360◦ RGB
monocular view as input and drop the remaining data.

Fig. 14. Left: Representative frame of a video captured by the Facebook x24 camera. Center: Comparison of the original depth provided by
Facebook, and our improved depth for the two highlighted regions of the scene. Right: Our improved depth yields better reconstructions of novel
views, without distracting artifacts.

Our system requires only RGBD 360◦ video as input, and is rather
robust to inaccuracies in the depth. Thus, it can deal with different
data sources, from 360◦ video plus depth stitched and computed from
individual videos from a camera rig, to 360◦ monocular video with
depth computed with a CNN-based depth estimation algorithm. While
having access to a multiview setup may not be commonplace, a number
of 360◦ cameras do provide stereo output, which can yield a reasonable
depth. Still some common cameras do not provide stereo (Ricoh Theta,
Samsung Gear 360, or Nikon Keymission 360, among others), due,
e.g., to the limited overlap between the camera views. Our method is
designed to be agnostic to the hardware employed during capture, in
order not to diminish generality.

Our user studies confirm that our method provides a more com-
pelling viewing experience, while reducing discomfort and sickness.
Interestingly, the additional degrees of freedom enabled by our method
also influence viewing behavior: On average, users displace more their
head from the center of projection when viewing content with 6-DoF.
Limitations and future work. The assumption of a static camera
for the input video is reasonable in our scenario, since a considerable
amount of 360◦ content is shot with static cameras. HMD and 360◦
camera manufacturers typically recommend static cameras [24, 51, 64,
65], and static cameras are widely preferred to moving cameras for
most types of 360◦ videos to reduce potential sickness.

This assumption is mainly required due to the way we compute the
extrapolated layer; further, if the camera moved we would need the
extrapolated and inpainted layers to be dynamic (i.e., videos instead of
images), requiring more storage and bandwidth during playback. Aside
from this, our representation could be extended to handle a moving
camera, and we leave this to future work.

Our layered representation features three layers. In theory, more than
three layers could be needed depending on scene complexity, and this
would incur additional storage and processing requirements. The num-

ber of moving and/or static objects overlapping in time and space, and
in general, the depth complexity of the scene, would need to be assessed
together with the increase in algorithmic complexity, in order to choose
the optimal number of layers for each scene. In practice, however,
we find our solution to be enough, and a number of reasons support
our choice: First, three layers represent the types of motion present
in many 360◦ videos: a few moving foreground actors or objects, as
well as static objects; second, the amount of storage and bandwidth
would increase with the number of layers, eventually hindering real
time playback; third, for scenes with greater layer complexity, deter-
mining the number and content of layers would be very challenging
from 360◦ video alone, and not necessary for typical videos given the
amount of head motion we target, and that has been shown as usual in
these setups [67].

Our computation of the extrapolated layer has an implicit limitation
for cases with strong lighting variations (e.g., moving shadows). In
those cases, depth remains constant but RGB can vary significantly,
so we can have some “noise” in the extrapolated layer. In practice,
however, the small extent and varying nature of disocclusions result in
this effect being negligible. Additionally, there might be some cases in
which large scene objects are close to the camera and remain stationary.
In such cases, one would need to resort to the inpainted layer, and more
complex inpainting algorithms may be needed.

Our method relies on the quality of the input depthmap, especially
near disocclusion boundaries. We lessen this dependency with our
depth improvement step, however, our method does still introduce
some artifacts at disocclusion boundaries, which is to be expected given
the extremely limited nature of our input. Our studies show that users
prefer 6-DoF viewing to 3-DoF viewing, even with these artifacts;
getting rid completely of such artifacts remains an open challenge. It is
possible that combining ideas from our work and the works by Hedman
et al. [32, 33] could lead to higher-quality 6-DoF capture.



Fig. 15. Three examples of novel views generated with our method. For each example we show the original view (top), and the corresponding
displaced view (bottom). We also include close-ups of regions where the added parallax is clearly visible.

Fig. 16. Color-coded visualization depicting the use of our three-layer
representation in a given frame for a displaced view (orange: foreground
layer ; green: extrapolated layer ; purple: inpainted layer ).

These errors increase as the viewer moves farther away from the
center of projection. In the future, we would like to explore options
to minimize this, for instance by creating a non-linear mapping be-
tween the head and the camera movement that prevents the viewer from
moving too far. Alternatively, existing techniques for controling user
attention in VR [17, 30] could be helpful in this context. Last, as a
consequence of the omnidirectional stereo (ODS) format, depth infor-
mation near the poles is not accurate [55], and thus the performance
of our method worsens near those regions. However, these regions are
rarely observed due to a horizon bias [62].

Many studies exist assessing presence, immersion, or discomfort
when exploring virtual reality (synthetic) content. In contrast, existing
studies on viewer experience watching 360◦ footage on HMDs are
preliminary and much remains to be explored about how we should
display real content on immersive HMDs. We hope that our work
provides a solid background for subsequent studies in this area.
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