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Abstract

Several participating media rendering algorithms are based on ray marching: they integrate the variations of
radiance along the volume covered by the participating media by splitting the path of light into segments and
sampling light contribution at each of those segments. This paper revisits the concept of ray marching not as an
integration technique, but as the application of a numerical method to solve an initial value differential equation.
We present how to apply different numerical methods as ray marching techniques, analyze a wide range of them
and study their applicability under different scenarios. Furthermore, we show how each of them improves over
traditional ray marching. Any participating media rendering algorithm that is based on ray marching will benefit
from the application of our technique by reducing the number of needed samples (and therefore, rendering time)
and/or increasing accuracy.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Ray tracing

1. Introduction

One of the most daunting tasks in Computer Graphics is to
accurately render participating media. As such, is a very ac-
tive field of research, in which each of the different tech-
niques finds its own compromise between accuracy and sim-
ulation time. A ray of light that traverses a participating
medium is altered in several ways at differential level: it
may be scattered or absorbed, or its power may increase due
to medium emission or in-scattering. All these interactions
happen at every differential point of the path of light. As
a consequence, light simulation becomes quite hard. How
to simulate a phenomena that changes at every differential
level?

One of the most widely used techniques to render partic-
ipating media is ray marching [PH89, JenO1]. Its main idea
is to divide the path of light into uniform segments, and ap-
proximate all the differential interactions that happen on that
segment by a single sample. That is mathematically repre-
sented as approximating an integral by a summatory. De-
pending on the size of each of those segments, the render
becomes more accurate (short segments) or the simulation
takes shorter time (large segments). The optimal compro-
mise between time and accuracy happens at a specific step
size, which is a per-scene parameter.
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Ray marching is, therefore, a fundamental technique for
participating media simulation. Our work attempts to pick
up its key ideas but redefine the underlying mathemati-
cal formulation in order to eliminate several of its weak-
nesses. Instead of approximating the corresponding integral,
we solve the Radiative Transfer Equation [Cha60] in its dif-
ferential form, which actually is an initial value problem, for
which there are plenty of numerical methods that can solve
it [Gea71,Pre07].

This resolution technique enables a new broad set of ray
marching techniques, one for each specific method. We re-
view the literature about numerical methods and study their
specific applicability to participating media simulation. Dif-
ferent methods lead to different sampling techniques along
the path of light which are not related to per-medium heuris-
tics (which may be partial or ad-hoc) but to the mathematical
definition of differential light contribution along the path.

Traditional ray marching actually becomes a particular
case of our algorithm, and, as a consequence, any technique
that includes traditional ray marching as part of their corre-
sponding render engine may trivially include ours.
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2. Previous work

Participating media rendering: Many previous papers
have dealt with participating media rendering, either based
on ray tracing [KvH84], Montecarlo simulations [PM93] or
other methods [RT87]. In practice, all of them approximate
the Radiative Transfer Equation [Cha60], and some of them
are explicitly based on solving that equation [KYNN91],
just as our paper is. There are several compendiums that
can give a broader overview of the available rendering tech-
niques [GJJDO09].

Ray marching: Ray marching has traditionally become
one of the key techniques for rendering participating
media [PH89]. Since then, it has been adapted to al-
gorithms such as photon mapping for participating me-
dia [JenO1] or applied to specific participating media, such
as smoke [FSJO1],

Some authors have proposed adaptive ray marching
techniques, that adjust their step size to better fit the
scene’s properties. They can be based on medium heuris-
tics [JenO1] or to the distribution of light samples in the vol-
ume [JNSJ11]. On contrast, our algorithm provides a generic
framework that, using an adaptive numerical method, can
potentially adapt to both medium properties and light dis-
tribution without the need of ad-hoc heuristics.

Ray marching has been used in interactive and real-time
techniques [ZRL*08, WR08]. We also expect that our algo-
rithm can be easily integrated into a GPU renderer.

Numerical methods for initial value problems: There has
been a lot of research regarding the different numerical
methods that can be used with our technique [Gea71, CLS8S,
Pre07], and those that we use are discussed in Section 4. In
Computer Graphics, such numerical methods have not been
widely used for rendering, with few exceptions [GSMAO06].

3. Overview

When light traverses a participating medium, it interacts
with the medium at every differential step, in three possi-
ble ways: it may get absorbed, scattered or even emitted by
the medium. The equation that defines this behavior is the
Radiative Transfer Equation [Cha60]:
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where w represents the differential variation of radiance

along the path of light 7, x is the differential point at which
the interaction occurs, ® represents the direction followed
by light and o’ represents the direction of other light paths
that reach the differential point x. The rest of the symbols
represent the properties of the medium:

e G, is the absorption coefficient, energy that is absorbed by
the medium at every differential step.

e O is the scattering coefficient, energy scattered by parti-
cles in the medium at every differential step.

® G; = G, + O; is the extinction coefficient, energy that is
either absorbed or out-scattered.

e p(x,,0) is the phase function, that defines the angular
distribution of light scattering.

e L. is the medium’s emission.

In order to render a participating medium, we need to
solve Equation 1 and obtain the radiance L(x, ®) that reaches
the eye. Traditional ray marching solves that equation by ap-
proximating its integral form:

L(x¢,®) = Tr(xg,Xt)L(xg, ®) +
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where T;(xg,Xt) is named transmittance and accounts for all
the light that has traversed the medium between x¢ and x¢
without getting extinguished due to the medium’s properties.
L;(xs,®) represents the in-scattered radiance (energy com-
ing from different light paths). They are defined as follows:

Tr(xg,X¢) = elo ~O00)ds 3
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Traditional ray marching techniques [PH89, Jen0O1] solve
this equation by approximating each of the integrals by using
the rectangle method [Pre07]. For instance, the third addend
of Equation 2 could be approximated as follows:

1
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in which the distance ¢ traveled by light is split into a set
of n segments (also called steps) of size As. Each of those
segments is a sample of the in-scattering L; along the path of
light. By increasing the number of segments 7, image quality
gets improved (step size As is reduced) but simulation time
also increases.

Figure 1 shows a diagram explaining where are those sam-
ples located. Notice, however, that each of those samples in-
volves the evaluation of 7, and L;, which are again integrals,
which must be also approximated.

T (see Equation 3) is usually evaluated by using the same
integration rule as the main integral. Redundant calculations
can be cached and performed more efficiently, but still this
double integral can result into a performance hit. L; involves
single scattering (light coming from the light sources) which
can be easily accounted for, and multiple scattering (light
that has bounced several times in the medium) which can be
sampled for instance using Montecarlo techniques or others
such as photon mapping [Jen01].
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Figure 1: Ray marching: the path of light inside the medium
is split into a set of segments. At each of those segments, the
variation of radiance is evaluated using a single sample.

Our work, on the other hand, attempts to take advantage of
the differential form of the radiative transfer equation (Equa-
tion 1) which, as it is shown below in the text, presents sev-
eral advantages over the integral form. First, there is a set of
numerical methods with interesting properties (beyond the
quadrature rectangle method) that can be applied. Also, solv-
ing the equation on its differential form avoids computing
the double integral (the inner 7).

Equation 1 has the following form:

Y(t)= 1) (6)

considering that 7 is the distance along the path of light and y
the radiance itself. Furthermore, the radiance that enters the
medium yy = L(x, ®) is also known (can be calculated from
the surface’s material properties and the light distribution).
Therefore, Equation 6 and the yg value form an initial value
problem [Gea71,CL85,Pre07] and, as such, there are several
kinds of different numerical methods that solve it. In the end,
as shown below, this results into smarter ways of choosing
the samples along the path of the light that interacts with the
medium, which in turn leads to better image quality and / or
shorter simulation times.

4. Numerical methods

Considering that Equation 1 has the form of an initial
value problem (Equation 6, being the radiance entering the
medium its initial value) it can be solved by a number of
numerical methods that are tailored to solve such specific
differential equations. The key idea is to deduce values from
the function based on the previously deduced ones (up to
the initial one). All the numerical methods presented in
this section have been widely documented in existing litera-
ture [Gea71,BF10], but we include brief explanations of the
methods tested on this paper for completeness purposes.

The most basic method is Euler’s method. Given the ini-
tial known value yq at the initial position ¢y, we can estimate
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different values of the function as follows:

Yirt = yi+sf(i,ti) @)
by =it ®)

where s is the step size, a parameter of the method. The
method finishes when it reaches the desired final value posi-
tion ;. The larger the step size, the faster calculation times
(but the lower accuracy). This is similar to box integration.

Notice that the samples are uniformly distributed along ¢.
This means that, when applied to Equation 1, Euler’s method
is numerically equivalent to traditional ray marching (see
Figure 1). However, as with ray marching, Euler’s method
presents several shortcomings that can be solved by choos-
ing more advanced methods.

4.1. Explicit Runge-Kutta

Euler’s method estimates the value at each step from its
derivative at a single value. A better approximation can be
done if using more than one sample per step. This is the key
idea of Runge-Kutta methods. An order two Runge-Kutta
method would need two samples on function f and would
replace Euler’s Equation 7 by:

1 1
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Notice that there is a whole family of order two Runge-
Kutta methods. In literature, the particular method defined
by Equation 9 is often named midpoint method but for this
work we will name it either order two Runge-Kutta or, for
simplicity Runge-Kutta 2.

One of the possible fourth order Runge-Kutta methods
(the one used in this paper) requires four samples and it is
defined by the following equation:

1 1
Vi1 :yi+5(k1+k4)+§(k2+k3) (10
where
ki = sf (yi,ti)

1 1
ky =sf ()’i + Ekl it §S>

1 1
ky=sf <yi + EkZJi + 5?)
ky = sf (yi+ks,ti +5)
As it can be deduced, both Runge-Kutta methods used in
this paper present a trade-off between per-step time and per-

step accuracy. Actually, Euler is the order one Runge-Kutta
method.

4.2. Implicit methods

Explicit Runge-Kutta methods (presented above) are prone
to instabilities caused by the equation, leading to high errors
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on regions in which the equation is specially stiff. Implicit
methods deal with this issue: instead of blindly following
the function step by step, they solve a per-step system of
equations that numerically stabilizes the calculations.

The simplest implicit method (the one we use in this pa-
per) is the Backwards Euler method, which replaces Equa-
tion 7 with:

Vi1 = Vi +5f(ig1,t) an

which means that, for finding y; ;| you actually need to know
vi+1- In practice, what this method needs to do at every sin-
gle step is to solve Equation 11 considering y; ;| as the un-
known. We do that by using the fixed-point method [BF10],
which calculates several iterations until the error is below
a given tolerance threshold. Therefore, this method is con-
figured through two parameters: step size and fixed-point’s
tolerance.

As shown below, implicit methods overcome mathemati-
cal singularities such as the ones caused by point lights with
little performance hit.

4.3. Predictor-corrector techniques

Implicit methods tend to be slower (but more accurate at stiff
equations) than their explicit counterparts. Also, higher or-
der methods are slower (but more accurate) than lower or-
der methods. Predictor-corrector techniques are based on the
idea that some steps can be calculated with faster methods
and some others require more accuracy and require slower
methods.

In this work we test the Trapezoidal (actually, Euler-
Trapezoidal) method. It is defined by the following (order
two) implicit method equation:

yiet =it 3 (FOunt) +f Oiprt +5)  (12)

The difference with a pure implicit method in this case is
that the first iteration of the fixed-point solver is done with
Euler’s method, which is faster and, in some cases, enough
for an adequate step estimation.

4.4. Adaptive step

The last kind of tested numerical methods are adaptive ones.
Their key idea is that larger steps are less accurate, but faster
than shorter steps. They estimate the error at every step and
increase the step size if the error is very low, or reduce the
step size if the error is too high (compared to a specific tol-
erance parameter).

As the function itself cannot be evaluated (it is not known,
it is what we want to solve) the error must be estimated by
comparing the solution of two different numerical methods
of different orders. In our case, the method we use compares
the relative error between Euler (Equation 7) and Runge-
Kutta 2 (Equation 9) for adjusting the step size.

5. Error-time analysis

Each of the numerical methods that have been introduced on
previous section shows different behavior when applied to
solve Equation 1, depending on their parameters:

e Step size
e Tolerance (in implicit, predictor-corrector or adaptive
methods).

For the error analysis, we need to find a ground truth to
compare our results to. In practice, this means finding an an-
alytical solution to Equation 1 which we do not have (if we
did, we would not need ray marching in the first place). How-
ever, under several specific conditions (enumerated below) it
is possible to find this analytical solution.

These conditions are:

e Homogeneous medium (constant absorption and scatter-
ing properties). No medium emission.

e Uniform lighting, without shadows, which in practice can
be achieved by an infinite directional light and a scene
geometry that does not cast any shadows.

e No multiple scattering.

Figure 2: Test scene. Left: ground truth render. Middle: per-
ceivably wrong render due to inadequate numerical method
and method parameters. Right: accurate render due to ade-
quate numerical method.

Figure 2, left, shows an scene that fulfills those conditions.
The scene is very basic: three axis-aligned planes with a sin-
gle directional light source, no shadows and a participating
medium that resembles some kind of green fog. The goal
of this scene is not its beauty but the possibility of render it
analytically.

Under the conditions presented above, several factors can
be taken out of the integral calculus (they become constant)
and as a consequence Equation 1 has the following analytical
solution (which can be deduced from Equation 2):

_ 1—e '
L(xt, ©) = ™" L(x0,®) + p(0i, @)L (%) —— (13)

where ; represents light direction, and p(®;,®) and L(w;)
are now constant for the whole light path (single directional
light source).

Equation 13 serves for the purpose of a ground truth ren-
der (see Figure 2, left) and helps to check whether a method
shows high (see Figure 2, middle) or low errors (see Fig-
ure 2, right).
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Figure 3: Error analysis, regarding different kinds of numerical methods. Error is calculated as relative to the ground truth
(so a 1 error would mean a 100% deviation over ground truth) and it is shown on logarithmic scale for better visualization
purposes. Time is measured in us per ray (so a million rays would need that specific number of seconds). Three variables
are compared: time, error and number of steps of the different methods. Euler method (which is equivalent to traditional ray
marching) is included on every graph for direct comparison purposes. RK is the abbreviation for Runge-Kutta. The number
besides some methods (Trapezoid, BackEuler, AdaptiveRK?2) is the chosen tolerance parameter. First row: time vs. step. Second

row: error vs. step. Third row: error vs. time.

Figure 3 shows the results of the performed error anal-
ysis for a set of numerical methods. For standard meth-
ods, specifically Euler, order two Runge-Kutta (RK2) and
order four Runge-Kutta (RK4) the behavior regarding step
size is the expected: the smaller the step (more steps re-
quired, therefore), the more rendering time and the more ac-
curacy. However, the error-time analysis shows that each of
the methods finds its own compromise between accuracy and
simulation time. Euler is the most efficient for low accura-
cies, while higher-order methods converge faster with step
size and therefore are more efficient at giving accurate ren-
ders.

Regarding implicit methods, there is no perceivable im-
provement on using the Backward Euler method as opposed
to standard Euler. In contrast, depending on the tolerance,
this fixed-point method may fail to converge to an adequate
solution for bigger step sizes (based on a too high per-
step error). Euler Trapezoidal method (which is a predictor-
corrector method): its performance is quite similar than the
order two Runge-Kutta method and in some cases may not
converge. In this case, this simple scene setup leads to a non-
stiff Equation 1, therefore neglecting the advantage of these
methods. Other scene setups (see Section 6) include singu-
larities on the equation that explicit methods cannot handle

(© The Eurographics Association 2012.

but are easily overcome by implicit and predictor-corrector
methods.

Last, adaptive methods show the expected performance.
For lower tolerances, the effect of step size is ignored, as
the method adapts its step size to the desired overall error
(leading again to better accuracy than Euler). This is a very
desirable property, as a tolerance parameter is more user-
friendly than step size.

6. Results

We have also tested our algorithm in several scene setups,
using different numerical methods. First, we have tested the
convergence of the standard algorithms in a scene that con-
sists on two car’s headlights (point lights inside a conical ge-
ometry that represents the headlight’s reflector) behind two
Stanford bunnies (Figure 4). The simulation of this scene can
be quite tricky because of the discontinuities on the deriva-
tive of radiance along the path of light, provoked by the sharp
shadows cast by both the bunnies and the reflectors.

The scene has been rendered using Euler, order two
Runge-Kutta and order four Runge-Kutta methods varying
the step size. For large step sizes, the error is quite noticeable
in the three numerical methods: the discontinuities due to the



96 A. Murioz / Differential Ray Marching

0.1

g
=
53]

t =18.87s t =59.53s
S
g
E
N

o
)
=
=
[a4

t =34.97s t=117.02s
<+
8
El
N

o
g0
=
=
[a4

t = 66.58s t =232.87s

0.025 0.00625

t =244.89s t = 882.39s

t = 448.00s t =1784.54s

t =3559.89s

t =872.38s

Figure 4: Convergence of the standard numerical methods according to step size. Each row shows the results for a numerical
method. From left to right, step size is reduced. Each cell contains the rendered image using the specific numerical method with
the column’s step size, plus the image’s rendering time measured in seconds.

shadow boundaries at each step are quite noticeable. How-
ever, as the step size shrinks (increasing rendering time), the
frequency of these discontinuities increase until they vanish
for the shortest step sizes.

Comparing the three methods, there are two relevant facts
to be noted: First, rendering time is proportional to the num-
ber of samples (double for Runge-Kutta 2, quadruple for
Runge-Kutta 4). Last, while the discontinuities are notice-
able on the three methods, higher order methods turn them
to be less apparent than lower order methods.

Multiple scattering has been approximated by an ambi-
ent term for two purposes: first, the errors made on multiple
scattering simulation might be impossible to disambiguate
from our algorithm’s error. Furthermore, multiple scatter-
ing tends to blur the apparent radiance, therefore neglecting
these discontinuities that are pretty relevant for the perfor-
mance analysis of ray marching techniques. The medium is
homogeneous, although this could be trivially extended to
heterogeneous media.

Figure 5 presents an analysis on low/high quality results
for different numerical methods and how are they related to
the corresponding method parameters. The top row shows

low quality results with five different methods, while the bot-
tom row presents the high quality results (for the same scene
setup) for the same methods, with their corresponding pa-
rameters and render time. The scene is a foggy Cornell Box
with a point light in the center. Again, this point light be-
comes an interesting challenge, as the exact position of the
light source is a singularity point on Equation 1.

The two order one methods (Euler and its implicit version)
show a similar behavior: for similar render times, their low
quality version shows clear artifacts for both of them (at the
spheres for Euler, and at the background for Backward Eu-
ler). On contrast, order two methods present very different
behaviors: Runge-Kutta is unable to overcome the effect of
the singularity (the point light), while both the Trapezoid and
adaptive methods overcome it. On its low quality setup, the
adaptive method is faster but less accurate, because its toler-
ance parameter is far from restrictive, and most probably the
step size ends up growing very large. The Trapezoid method
is similar than Runge-Kutta 2 in terms of time and quality,
except that, being predictor-corrector, is able to overcome
the black hole singularity.

The high quality versions are very similar in terms of ren-
der result. Order one methods take similar render times. Or-
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Figure 5: Cornell box rendered using different combination of parameters of different numerical methods, one per column (s =
step size, tol = method tolerance, t = render time in seconds).
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Figure 6: Scene with high frequency illumination. Runge-Kutta 2 and Trapezoidal methods present similar behavior, while the
particular setup of this scene hampers the adaptive method’s performance. The insets zoom into the most affected image area.

der two methods are also similar in render time, except for
the adaptive method, because its tolerance parameter is prob-
ably very restrictive in this case, leading to very short step
sizes.

Our last test scene (Figure 6) is designed to have complex
(high-frequency) illumination and to test all the order two
methods. Runge-Kutta 2 and Trapezoidal methods give ac-
curate renders using similar CPU times. However, the adap-
tive method gives artifacts for the same render time, and can
still be perceived even for a more restrictive tolerance (and
almost triple render time). This is owed to the peculiar de-
sign of the scene: the step size under the adaptive framework
increases on low error regions (basically, the dark regions).
When the method reaches the high-frequency light beam, it
totally skips it (due to a large step size). Notice that the rest
of the scene is quite accurate. A possible solution for this
would be to devise a new error adaptation strategy that in-
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clude a maximum step size, or use a higher order adaptive
method.

All these simulations (both this and previous sections’)
have been calculated in an Intel Core i5 at 2.4GHz with 4GB
RAM. The image resolution is 800x600 (except for the Cor-
nell box, which is 800x800). The code has been parallelized
using threads.

7. Conclusions and future work

We have redesigned the ray marching algorithm based on the
differential form of the radiance transfer equation, and have
studied how do different numerical methods translate into
sampling strategies along the path of light, finding their own
compromise between render time and accuracy. We have
shown that traditional ray marching is a particular case of
our algorithm for Euler’s method, and shown that other tech-
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niques present interesting properties, such as adaptive step
size, robustness to stiffness or faster convergence.

We have also shown a numerical validation of our tech-
nique, a convergence study and a set of rendered results that
show using different numerical methods. We have also com-
pared with traditional ray marching (Euler’s method) and
overcome some of its limitations, and found more efficient
and more accurate solutions. Implicit and predictor-corrector
methods overcome scene singularities with no noticeable
performance hit, while adaptive methods are easier to con-
figure.

We have considered Equation 1 to be generic, but in fact
it presents several properties that might be worth studying
in order to avoid redundant calculations, find better ways to
solve the corresponding system that is required for implicit
numerical methods or use specific (tailored to the proper-
ties of the equation) numerical methods. Furthermore, other
methods or other error estimation strategies could be tested.
For instance, higher order adaptive methods may lead to
more accurate results or better error estimations (and there-
fore less steps).

For a first analysis of the results of the differential ray
marching algorithm, multiple scattering has been approxi-
mated by an ambient term in order to avoid the influence of
the simulation multiple scattering on the overall error. How-
ever, it would be interesting to check how Montecarlo mul-
tiple ray marching, photon mapping or beam tracing could
be included as multiple-scattering estimators in our differ-
ential ray marching approach. We would also like to test our
technique on non-homogeneous media. Last, it is expected
that, as traditional ray marching, our technique can be easily
ported to GPU.

We hope that our work is included into renderers that are
based on traditional ray marching (should be a trivial task)
and that it inspires further research on the topic.
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