Relativistic Effects for Time-Resolved Light Transport

Adrian Jarabo1 \hspace{1cm} Belen Masia1,2,3 \hspace{1cm} Andreas Velten4
Christopher Barsi2 \hspace{1cm} Ramesh Raskar2 \hspace{1cm} Diego Gutierrez1

1Universidad de Zaragoza \hspace{1cm} 2MIT Media Lab \hspace{1cm} 3I3A \hspace{1cm} 4Morgridge Institute for Research
Motivation
Motivation – Time-resolved Imaging

[Velten et al. SIGGRAPH 2012; 2013]
Motivation – Time-resolved Imaging

Can we visualize the data from different viewpoints?

Time-Resolved Data

+ Obtained Geometry
Motivation – Time-resolved Imaging

Can we visualize the data from different viewpoints?
Can we visualize the data from different viewpoints?
Motivation – Time-resolved Imaging

Can we visualize the data from different viewpoints?
Motivation – Time-resolved Imaging

In the scene, the camera is moving at relativistic speeds.

The need to model relativistic effects naturally arises when visualizing time-resolved data.
Time-Resolved Imaging & Relativistic Rendering

We are not the first to do relativistic rendering...

[Hsiung et al. 1990; Chang et al. 1996; Weiskopf et al. 1999; 2000] [Weiskopf et al. 2006]
Time-Resolved Imaging & Relativistic Rendering

We are not the first to do relativistic rendering...

OpenRelativity [Kortemeyer et al. 2013]
A Slower Speed of Light
Time-Resolved Imaging & Relativistic Rendering

We are not the first to do relativistic rendering...

Limitations of previous methods:

(1) do not deal with non-constant irradiance
Time-Resolved Imaging & Relativistic Rendering

Us (Time-resolved) vs Previous Work
Time-Resolved Imaging & Relativistic Rendering

Real Captured Data [Velten et al. SIGGRAPH 2013]

Synthetic Data [Jarabo et al. SIGGRAPH ASIA 2014]
Limitations of previous methods:

(1) do not deal with non-constant irradiance
Time-Resolved Imaging & Relativistic Rendering

We are not the first to do relativistic rendering...

Limitations of previous methods:

(1) do not deal with non-constant irradiance
(2) do not consider camera transformations
Time-Resolved Imaging & Relativistic Rendering

We are not the first to do relativistic rendering...

Limitations of previous methods:

(1) do not deal with non-constant irradiance
(2) do not consider camera transformations
(3) do not handle relativistic rotation
Rendering Relativistic Effects

\[L_\lambda(\theta, \phi, \lambda, t) \quad \leftrightarrow \quad L'_\lambda(\theta', \phi', \lambda', t') \]

Radiance in world frame

Radiance in camera frame

\[v = \beta \cdot c \]
Rendering Relativistic Effects

Five main phenomena:

- Light aberration
- Doppler effect
- Searchlight effect
- Time dilation
- Camera deformation

Previous Work

Geometry deformation
Relativistic Effects – Light Aberration

Static

\[\beta = 0 \quad \beta = 0.3 \quad \beta = 0.6 \quad \beta = 0.9 \quad \beta = 0.99 \]

Camera approaching the scene

Camera moving away from the scene
Render Relativistic Effects

Five main phenomena:

- Light aberration → Geometry deformation
- Doppler effect → Color shift
- Searchlight effect
- Time dilation
- Camera deformation

Previous Work
Relativistic Effects – Doppler Effect

Static

\[\beta = 0 \quad \beta = 0.15 \quad \beta = 0.25 \quad \beta = 0.35 \quad \beta = 0.50 \quad \beta = 0.55 \]

Camera approaching the scene

UV
Rendering Relativistic Effects

Five main phenomena:

- Light aberration → Geometry deformation
- Doppler effect → Color shift
- Searchlight effect → Change in brightness
- Time dilation
- Camera deformation

Previous Work
Relativistic Effects – Searchlight Effect

Static

$\beta = 0$ $\beta = 0.2$ $\beta = 0.3$ $\beta = 0.4$ $\beta = 0.5$

Camera approaching the scene
Rendering Relativistic Effects

Five main phenomena:

- Light aberration → Geometry deformation
- Doppler effect → Color shift
- Searchlight effect → Change in brightness
- Time dilation
- Camera deformation
Rendering Relativistic Effects

Five main phenomena:

- Light aberration
- Doppler effect
- Searchlight effect
- Time dilation
- Camera deformation
Relativistic Effects – Time Dilation
Relativistic Effects – Time Dilation

\[t_1 = t_0 + \frac{d}{c} \]
Relativistic Effects – Time Dilation

Lorentz contraction

\[l' = \frac{l}{\gamma} \]
\[\Delta t' = \gamma \Delta t \]
\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]

\[t_1 = t_0 + \frac{d}{c} \]
Relativistic Effects – Time Dilation

Lorentz contraction

\[l' = \frac{l}{\gamma} \]
\[\Delta t' = \gamma \Delta t \]
\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]

\[t'_1 = \gamma t_0 + \frac{d}{(\gamma c)} \]
Rendering Relativistic Effects

Five main phenomena:

- Light aberration
- Doppler effect
- Searchlight effect
- Time dilation
- Camera deformation

Increase Frame Rate
Non-Constant Rad. Integration
Rendering Relativistic Effects
Rendering Relativistic Effects
Rendering Relativistic Effects

Five main phenomena:

- Light aberration
- Doppler effect
- Searchlight effect
- Time dilation
- Camera deformation

Previous Work
Relativistic Effects – Camera deformation

Old camera model:
Relativistic Effects – Camera deformation

Old camera model:

- Incoming Light
- 0D Camera
Relativistic Effects – Camera deformation

Pinhole camera model:
Relativistic Effects – Camera deformation

\[v = \beta c \]

Lorentz contraction

\[d = \frac{d'}{\gamma} \]

- **Sensor**
- **Pinhole Aperture**
- **FOV** \(\alpha/2 \)
- **Incoming Light**
Relativistic Effects – Camera deformation

\[v = \beta c \]

Lorentz contraction

\[d = \frac{d'}{\gamma} \]
Relativistic Effects – Camera deformation

\[\alpha' = 2 \arctan \left(\frac{\tan(\alpha/2)}{\gamma} \right) \]
Relativistic Effects – Camera deformation

Without

With

\[\beta = 0.35 \]
Relativistic Effects – Camera deformation

Without

With

$\beta = 0.50$
Rendering Relativistic Effects

Five main phenomena:

- Light aberration
- Doppler effect
- Searchlight effect
- Time dilation
- Camera deformation
Relativistic Effects – All together...
Relativistic Effects – All together...
Rendering Relativistic Effects

More than just linear non-accelerated motion...

Relativistic Acceleration

Relativistic Rotation
Relativistic Acceleration
Relativistic Acceleration

\[\beta_{\text{sensor}} = 0.7 \]
Relativistic Acceleration

\[\beta_{\text{sensor}} = 0.7 \]
Relativistic Acceleration

\[e_1 \rightarrow e_2 \]

\[\text{time} \]

\[\text{space} \]

\[\beta_{\text{sensor}} = 0.7 \]
Relativistic Effects – Camera deformation

\[\alpha' = 2 \arctan \left(\frac{\tan(\alpha/2)}{\gamma} \right) \]
Relativistic **Acceleration**

Constant Speed Acceleration

\[\beta = 0.6 \]
Relativistic Acceleration

Constant Speed

Acceleration

$\beta = 0.9$
Relativistic Acceleration

Constant Speed

Acceleration
Rendering Relativistic Effects

More than just linear non-accelerated motion...

Relativistic Acceleration

Relativistic Rotation
Relativistic Rotation

No commonly accepted theory for relativistic rotation
Relativistic Rotation

\[\beta = 0.2 \quad \beta = 0.4 \quad \beta = 0.8 \quad \beta = 0.99 \]
Relativistic Rotation

\[\theta \approx 0^\circ \]

\[d\beta_0 \]

\[dx_0 \]

\[dx_2 \]

\[\beta_2 \]

Sensor
Relativistic Effects – Rotation
Conclusion & Future Work

Relativistic rendering framework of time-resolved data:
• **non-constant** time-resolved radiance
• **acceleration** and **rotation** for visualization
• **pinhole camera** model with **camera deformation**

Future Work:
• General relativity -> Gravitational Forces
• More sophisticated camera models
• Lift Lambertian surface assumption
Relativistic Effects for Time-Resolved Light Transport

THANKS!

Adrian Jarabo1 \quad Belen Masia1,2,3 \quad Andreas Velten4
Christopher Barsi2 \quad Ramesh Raskar2 \quad Diego Gutierrez1

1Universidad de Zaragoza \quad 2MIT Media Lab \quad 3I3A \quad 4Morgridge Institute for Research
Implementation Details

Standalone app., **real-time**, OpenGL

x-y-t data => 3D texture in GPU in world time

Light aberration => geometry needs to be **re-tessellated**

Doppler effect => wavelength-to-RGB 1D texture

Searchlight effect => pre-integrate (in time) irradiance values & **anisotropic mipmapping** to later access them
Time Unwarping

Captured (camera time)

Corrected for depth

Corrected for depth and scattering
Femto-photography Setup System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Resolution</td>
<td>2 ps (0.6 mm)</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>672 by up to 1000 pixels</td>
</tr>
<tr>
<td>Time gating contrast</td>
<td>100% (sensor)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Photon counting, ~10% quantum efficiency</td>
</tr>
<tr>
<td>Illumination Power</td>
<td>500 mW</td>
</tr>
<tr>
<td>Capture Time</td>
<td>About 1 hour for presented videos (limited by camera SNR and amount of available photons)</td>
</tr>
</tbody>
</table>
Femto-Photography Setup

Laser

BS

Synchronization

Streak Tube

Scene

D

L

Zoom Lens
Image Intensifier
Femto-Photography Setup

- Laser
- Streak Tube
- Synchronization
- Zoom Lens
- Streak Camera View

Diagram showing the setup with labeled components: Laser, BS, Streak Tube, Synchronization, Zoom Lens, and Scene.
Camera Picture – *a 1D Movie*
Going from 1D to 2D