

ToyVision: A Toolkit to Support the Creation of Innovative
Board-Games with Tangible Interaction

Javier Marco

Madeira-ITI

University of Madeira, Portugal

javier.marco@m-iti.org

Sandra Baldassarri, Eva Cerezo

GIGA Affective Lab

Computer Science Department,

Engineering Research Institute of Aragon (I3A)

Universidad de Zaragoza, Spain

{sandra, ecerezo}@unizar.es

ABSTRACT

This paper presents “ToyVision”: a software toolkit

developed to facilitate the implementation of tangible

games in visual-based tabletop devices. Compared to other

toolkits for tabletops which offer very limited and tag-

centered tangible possibilities, ToyVision provides

designers with tools for modeling and implementing

innovative tangible playing pieces with a high level of

abstraction from the hardware. For this purpose, a new

abstraction layer (the Widget layer) has been included in an

already existing tabletop framework (ReacTIVision),

providing the host application with high processed data

about each playing piece involved in the game. To support

the framework application, a Graphic Assistant tool enables

the designer to visually model all the playing pieces into

tangible tokens that can be tracked and controlled by the

framework software. As a practical example, the complete

process of prototyping a tangible game is described.

Author Keywords

Tabletop; toolkit; tangible; games; playing pieces; widget;

design.

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User

Interfaces—Input devices and strategies, Interaction styles

General Terms

Design.

INTRODUCTION

The increasing popularity of tabletop devices is bringing in

a new generation of entertainment and game applications

that mix traditional face to face gaming with computer

augmentation on the active surface [29]. At present, most of

these tabletop games are based on multitouch interaction

[5], [1] and players manipulate virtual representations of the

playing pieces by dragging their fingers on the table.

However, several tabletop devices are not only capable of

detecting user fingers and hands, but also of supporting the

identification and tracking of conventional objects placed

on the surface. This also enables the use of physical playing

pieces in tabletop games [13] [22], reinforcing the

emotional impact that the activity has on the players [17]

[15].

Although the tabletop hardware can be used to detect and

track fingers and objects on the surface, the development of

an application is not easy since it usually involves having to

“hardcode” complex algorithms to process raw data from

tabletop in order to detect and track each playing piece

manipulated on the active surface. This situation results in a

gap between the tangible interaction design process and the

corresponding implementation tasks, i.e., between designers

and developers. To tackle the problem, several toolkits have

emerged with the aim of isolating the hardware

complexities of a tabletop system. These toolkits offer high

processed data of user interactions on the table, both tactile

and through objects, but unfortunately in a very basic form:

tangible interaction is described through simple events

(object placed, moved or removed). This simplistic

approach constrains the designer to using playing pieces

that can merely be moved on the table, limiting the

exploration of richer tangible interaction possibilities.

This paper proposes a toolkit for the prototyping of tangible

tabletop games involving playing pieces that can be

manipulated by the players and also controlled by the

system in a great variety of ways. ToyVision lowers the

threshold of implementing a tangible game, and so enables

designers to access tasks that previously required greater

engineering and coding skills.

The paper first examines the current state of the art in

tabletop and tangible toolkits. An application scenario is

then presented, and the problems involved in building

complex tangible interactions with playing pieces using

current tabletop toolkits are identified. Next, the ToyVision

tools (a Graphic Assistant and a Framework application) are

detailed. The coding stage of the application scenario is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

TEI 2013, Feb 10-13, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1898-3/13/02....$15.00.

then sketched. Finally, the conclusions and proposals for

future work are outlined.

RELATED WORK

Due to the recent success of multitouch devices, several

software frameworks have been created to be used as

toolkits for the rapid development of tabletop applications

independent of the hardware. While earlier multitouch

frameworks merely informed developers about raw-tactile

events (finger added, moved, taken away from the table)

[33] [2] [23] [32] [24], recent frameworks also inform about

finger gestures by sending high abstraction events (zoom,

rotation, delete…) [14] [11] [27].

The addition of tangible interaction to tabletop surfaces

requires conventional objects placed on the interactive

surface area to be identified and tracked. In visual based

multitouch surfaces [31], this can be achieved by attaching

a printed visual tag (fiducial) [6] on the base of the object.

Fiducial recognition and tracking is based on a simple

principle: a fiducial is composed of a unique distribution of

reflective and non-reflective to infrared light (IR) areas, and

the visual software detects the reflective areas as white

blobs. Using this technique, several multitouch tabletop

frameworks also support tangible interaction with tagged

objects [3] [28] [4] [34].

The software architecture of tabletop frameworks has been

described by Echtler and Klinker [9] using four layers, from

the lowest to the highest abstraction: Hardware, Calibration,

Event Interpretation and Widget layers. A framework that

follows a layered architecture (see fig. 1) offers at least the

Hardware Layer in order to hide the visual hardware and

blob recognition algorithms. Optionally, the framework can

add the Calibration layer to correct the position coordinates

of each detected blob due to camera optics aberrations. In

the Event Interpretation layer, the framework keeps track of

multitouch events (“finger” added, moved or removed from

the tabletop surface) and tangible events (“fiducial” added,

moved or removed from the tabletop surface). Finally, by

adding the Widget layer, the framework may associate

sequences of events in tabletop regions with predefined

actions in the tabletop application.

By separating the framework software from the

development environment, tabletop applications can be

translated to other devices based on different hardware or

even based on a different framework. This is achieved by

the use of standard communication protocols between the

framework and the tabletop host application. In this context,

the TUIO protocol [19] has become very popular and has

been adopted by most tabletop frameworks [28] [4] [33]

[23]. However, the TUIO protocol is designed to transmit

processed data from the Event Interpretation Layer (EIL):

the framework sends, embedded in TUIO packets,

multitouch and tangible events to the tabletop application

(see fig. 1). TUIO support of tagged objects is limited to

three simple events: add, remove and move/rotate.

Figure 1. Software architecture of tabletop frameworks based

on an Event Interpretation Layer (EIL) .

More specific toolkits for supporting the design of Tangible

User Interfaces (TUI) are mostly hardware-focused and aim

to isolate designers and developers from the intrinsic

complexity of managing several kinds of sensors and

actuators embedded in objects. Commercial or open-source

hardware toolkits such as Phydgets [10] or the Tower

System [26] propose a limited set of electronic components

and software libraries that can be easily assembled to

provide any physical object with sense and action. In order

to isolate developers from electronic embedded

components, some other TUI toolkits [7] [12] [20] [8] [21]

also include a more complex software layer supported by a

Graphic Assistant tool, which introduces more of a “design

thinking” approach to TUI toolkits as opposed to the

“implement thinking” characteristic of previous toolkits.

The work presented here contributes to the state of the art

of tabletop toolkits with the addition of a Widget layer in an

already existing tabletop framework based on an EIL

architecture, and a Graphic Assistant to model the tangible

interaction. The new Widget layer and the Graphic

Assistant help designers to implement advanced tangible

interaction in playing pieces for tabletop games with a high

level of abstraction from the hardware. The intrinsic

difficulty of designing a tangible toolkit which includes a

Widget abstraction layer lies in the huge variety of different

existing objects and different manipulations that have to be

modeled in the toolkit [30]. Nevertheless, limiting the scope

to board games, the range of playing pieces should be

manageable. Starting from the concept of “Token” defined

by Holmquist et al. [16] as any object used to represent

some stored digital information, we have proposed a

classification of board-game playing pieces into four types

of Tokens [25]:

 Simple Tokens are the most common in board games

(Ludo, Go, Checkers…). They are pure symbolic objects

(chips, marbles…) mostly used to represent players.

 Named Tokens have a very specific role in the game

(e.g., the pieces in the Chess game have different roles).

They are iconic playing pieces as their physical

appearance is used to represent their function in the

game.

 Constraint Tokens are a combination of a Named Token

and one or more Simple Tokens. The Named Token acts

as a physical constraint of the manipulations of the

Simple Tokens. The way these simple tokens are

manipulated within the constraint is related with the

status of the playing piece in the game (e.g., the small

pieces inside the big Trivial Pursuit™ playing piece are

used to represent each player’s achievements).

 Deformable Tokens are playing pieces without a

constant shape (e.g. clay, fabrics…) which are mainly

used in handcraft and building games.

The present work also roots on this classification to model

each playing piece involved in a tabletop game. Moreover,

the ToyVision toolkit also enables a Token to be made

“active”, i.e. to be manipulated not only by the player, but

also by the computer system.

APPLICATION SCENARIO

In order to show how ToyVision facilitates the creation of

tabletop games for designers, this section presents a game

concept involving complex playing pieces, some of them

active. This concept will illustrate some problems that

current EIL tabletop toolkits are not able to tackle.

The game chosen is “Dragon’s Cave”, a board game for

children based on the Dungeons & Dragons® role-playing

games. In the “Dragon’s Cave” game, the players play the

role of a hero who has to find a sword to kill a dragon that

lives in a cave (see fig.2). The game is composed of the

following playing pieces:

 One or more Heroes (see fig.2-1). Players move their

Heroes in turns. A virtual dice (see fig.2-2) represents the

distance that the playing piece can move on the board in

any turn.

 A Dragon (see fig.2-3). This playing piece slowly rotates

during the game, looking for Heroes. When the Dragon

looks straight at a Hero, it launches a virtual fireball and

the player is removed from the game. The Dragon rotates

by means of a small servo motor on the base of the toy.

 A Chest (see fig.2-4 and fig.3). This contains the Sword

playing piece needed to kill the Dragon. The Chest

automatically opens by means of a small servo motor on

the back when a Hero gets sufficiently close. When the

Chest is open, the Hero gets the sword and can move

towards the Dragon to kill it.

 The Sword (see fig.3 right). This is a small metallic

playing piece that remains inside the Chest until a Hero

opens it. Then, the player places the Sword in the Hero’s

arms to represent that the Hero is able to kill the Dragon.

Figure 2. The “Dragon’s Cave” game and its playing pieces. 1:

The Hero. 2: Dice. 3: Dragon. 4: Chest.

Figure 3. Chest toy. Left: closed. Right: open with the miniature

Sword inside.

So that the manipulations of the toys may be tracked by the

tabletop software toolkit, a fiducial has to be glued to the

base of each playing piece. However, when a tabletop

software framework based on EIL architecture is used to

implement the game, the fiducial technique cannot solve the

design of the Hero and the Sword playing pieces because

the framework merely sends events of a playing piece when

it is placed, moved, or removed from the tabletop. There is

no such event for “the Hero has taken the Sword”, and thus

a hardware-specific coding solution needs to be created for

this situation, which may be beyond the capability of the

designer.

Moreover, the designer also has to implement mechanical

and electronic solutions using actuators in order that the

Dragon can rotate and the Chest be automatically opened

by the system during the game. An EIL framework does not

have hardware abstractions for toy sensors and actuators,

and so it will be very difficult for a designer to create the

specific code required to control each electronic device.

Once again, this task should probably be delegated to an

engineer or a programmer.

The next section describes the ToyVision toolkit and the

different approaches it provides towards modeling tangible

interaction in playing pieces such as those involved in the

“Dragon’s Cave” game.

TOYVISION TOOLKIT

ToyVision is composed of two software tools: a tabletop

Framework and a Graphic Assistant application (see figure

4). The ToyVision Framework takes an existing EIL

tabletop framework (ReacTIVision in this case) and

expands it with a new Widget layer. This layer is

responsible for managing all tabletop finger and fiducial

events and processing them into high abstract events

directly related with each playing piece involved in the

game. These events are coded in XML format and sent to

the Host Game application through a TCP-IP socket.

Furthermore, the Widget layer also manages high abstract

commands received from the Host Game application to

control active toys. These commands are translated into low

level actuator orders and sent to an Analog/Digital (A/D)

hardware converter (we use the open-source Arduino

platform [18] for this function) connected to the Toolkit

through a Bluetooth wireless connection. The Widget layer

is able to translate low and high abstract events and actuator

commands thanks to the information provided in the

Toys.XML configuration file, previously generated by the

Graphic Assistant tool. This Assistant is used by the

designer to graphically model all the playing pieces as

tangible Tokens during the design process of the game.

Figure 4. ToyVision toolkit architecture.

The Graphic Assistant tool is detailed below, together with

the process that enables the playing pieces involved in the

“Dragon’s Cave” game to be modelled. This is followed by

a description of the Framework, especially the

functionalities of the Widget layer which represent the

innovative content of the framework.

ToyVision Graphic Assistant Tool

The ToyVision Graphic Assistant has been designed

following a similar approach to that of existing graphic

tools included in most popular development environments

oriented to coding WIMP-based applications. These tools

enable interface designers to graphically arrange controls

on an application frame and to define attributes for each

control, thus facilitating the coding of the interface.

ToyVision Graphic Assistant allows the designer to model,

in a simple manner, all the data needed by the Toolkit (in

particular by the Widget layer) to translate between low and

high abstract data related with the tabletop and the playing

pieces. The process of modeling playing pieces is now

shown using the “Dragon’s Cave” application scenario.

The Chest and the Dragon playing pieces belong to the

Named Token category as they are iconic toys with a very

specific function in the game. Thus, to model the Dragon

toy, the designer places the toy on the table surface and

clicks on the Named Token icon on the main menu of the

application. The Token Configuration screen appears (see

fig.5), letting the designer see the image sent by the tabletop

camera (see fig.5-1). By activating the rectangular or

circular buttons (see fig.5-2), the designer graphically

draws the available area on which to glue a fiducial on the

toy’s base. The Token Configuration screen also provides a

list of sensors (see fig.5-3) and a list of actuators (see fig.5-

4) (new electronic components can be easily added to these

lists by editing an external XML file included in the

Graphic Assistant tool installation folder). The Dragon toy

has a servo motor to rotate the figure during the game. To

add this actuator, the designer drags the servo motor

actuator icon into the visual camera feedback area. At that

moment, a configuration window appears requiring data

about the added component (see fig.6).

Figure 5. Named Token Configuration screen.

Figure 6. Actuator Configuration screen.

The Actuator Configuration screen enables the designer to

specify the low level details of the electronic component,

and how these will be referred to at a high abstraction level.

First, the designer gives a name to the actuator (in this case,

“Motor”). Then, the designer links it with one of the

analog/digital input/output terminals in the Arduino

platform (see fig.6-1). At that moment, the designer can

physically connect the Arduino device to the computer and

check the actuator behavior using the “current status” text

field by giving it a 0.0 to 1.0 value (all electric currents are

normalized). Using these current values, the designer

provides a list of different high level commands with a

meaningful name in order to be referenced during the

implementation stage. Figure 6-2 shows two commands for

the Dragon toy: the “Reset” command will position the

dragon in the initial orientation at the beginning of the

game, and the “Rotate” command will be used to slowly

rotate the toy during the game.

In the case of the Hero playing piece, the designer first has

to solve technically how the Framework will “sense”

whether the Sword is placed on the toy. This can be done

by providing the playing piece with an electric switch

component that closes a circuit when the Sword toy is

placed on the arms of the Hero toy, causing an IR LED on

the base of the toy to come on (see fig. 7). The light emitted

by the LED can be detected by the Hardware layer of the

Framework as a circular white blob and the Event

Interpretation layer will trigger a “finger” event.

Figure 7. Hero playing piece. Left: without the Sword, the

electric circuit is open. Center: placing the metal Sword between

the two electric terminals closes the circuit. Right: The IR LED

on the base of the toy comes on when the circuit is closed.

This design solution can be modeled in the Graphic

Assistant using the Simple Token and the Constraint Token

categories. The IR LED on the base of the toy is a

constrained Simple Token that can simply appear or

disappear on the base of the Hero playing piece (depending

on the presence or absence of the Sword toy). Thus, to

model the Hero playing piece, the designer first places the

toy on the table surface and clicks the “Simple Token” icon

on the Graphic Assistant main menu. The Simple Token

Configuration screen appears. The designer gives a name to

the Token (“Sword” in this case) and sets an approximate

range of maximum and minimum sizes for the light spot

created by the IR LED on the base of the Hero toy. Finally,

the designer models the Hero playing piece by clicking on

the “Constraint Token” icon on the application main menu.

The Configuration screen appears (see fig.8). As in the case

of a Named Token, the designer first uses the marker tools

(see fig.8-1) to draw on the camera feedback image (see

fig.8-2) the area on the base of the toy where the fiducial

has to be glued. Then, using the “Simple Tokens” tools (see

fig.8-3), the designer draws the area on the base of the toy

that belongs to the IR LED. There are two kinds of Simple

Token areas: Associative (representing areas where a

Simple Token can only appear or disappear) and

Manipulative (representing areas in which the Simple

Token is always present but is able to move within the

area). In the case of the Hero playing piece, the Simple

Token area is an Associative area, as the IR LED makes the

Simple Token on the base appear and disappear. Then, the

designer adds a switch sensor by dragging its icon (see

fig.9-4) to the central area of the interface, and the sensor

configuration screen appears (see fig.9).

Figure 8. Constraint Token Configuration screen.

Figure 9. Sensor Configuration screen.

The added sensor (named “Arms”) can send its status to the

Framework through the Arduino platform (see fig.9-1), or

by associating it with a Simple Token area (see fig.9-2), as

in this case. The designer gives meaningful names to the

different status that the sensor can have (see fig.9-3), which

will be used during the game implementation stage.

Once all the playing pieces involved in the game have been

modeled, the designer exports the project to a local folder.

Two files are created during the export process: an Adobe

PDF document containing all the fiducial markers ready to

be printed, cut and glued on the base of each playing piece,

and the Toys.XML configuration file which contains all the

information needed by the Widget layer to be able to

process all the low level information related with the

tabletop hardware and the Arduino platform into high

abstract data.

ToyVision Framework

The ToyVision Framework expands the open-source

ReacTIVision framework by adding a new Widget layer to

its EIL architecture. The Widget layer is responsible for

processing all the events received from the ReacTIVision

EIL and from the Arduino platform, finding relations

between them and the playing pieces pre-modeled as

Tokens in the Graphic Assistant tool. To support this

functionality, the Widget layer uses all the information

contained in the Toys.XML file. This process is now

illustrated with the “Dragon’s Cave” application scenario.

The following XML code specifies the Dragon playing

piece as it is stored in the Toys.XML file.

<NamedToken name="Dragon" fidID="2">

<actuator name="Motor" terminal="9">

<command name="Reset" type="const"

value="0"/>

<command name="Rotate" type="var"/>

</actuator>

</NamedToken>

The “NamedToken” tag gives the Token category and

contains the attributes related with the Dragon playing piece

name and its assigned fiducial (fidID). In this way, each

time the EIL sends an event (add, move or remove) related

with the fiducial with ID=2, the Widget layer recognizes

that this event belongs to the Dragon. The next XML tag

(“actuator”) informs that the Dragon playing piece has an

embedded electronic actuator, named “Motor”, which is

connected to the 9th terminal of the Arduino platform. The

next two XML tags (“command”) inform that the Motor

actuator can receive two possible orders from the game:

“Reset” and “Rotate”. If the Widget layer receives an order

to “Reset the Motor”, the Widget layer translates it to “set

9
th

 Arduino terminal to 0 volts”; and if the Widget layer

receives an order to “rotate (value=0.1) the Motor”, it sets

the 9
th

 Arduino terminal to 0.1 volts, which will slightly

rotate the Dragon figure.

The following XML code specifies the Hero playing piece:

<SimpleTokens name="Sword" size="561"

tolerance="378"/>

<ConstraintToken name="Hero" fidID="0,1">

<AssociativeArea name="a0" radius="0.04"

distance="0.07" angle="3.12"/>

</ConstraintToken>

The first tag (“SimpleTokens”) gives instructions to the

Widget layer to identify the IR Spot lights on the base of

the Hero playing pieces. Each time the EIL sends a “finger”

event (added, moved or removed), the Widget Layer

compares its size and tolerance values provided in the XML

tag attributes. If this is positive, the low abstract event can

be translated into a high abstract one: “a Hero has got or

lost a Sword”. The next tag helps to find relationships

between the Heroes and the Sword. The “ConstraintToken”

tag provides the name (“Hero”) and fiducial ID of the

playing piece (in this case there are two IDs for two

possible players). The next tags list all the Constraint areas.

The “Hero” has one “AssociativeArea” (named “a0”), and

the tag attributes inform about its size and position in polar

coordinates in relation to the center of the fiducial area.

With these data, the Widget layer finds spatial relations

between “Swords” and “Heroes” events. When a

relationship is found, the Widget layer composes a high

abstract event directly related with a specific Hero playing

piece (e.g., “Player 1’s Hero has got the Sword”).

Finally, the Widget layer codes the high level events in

XML format and sends them through the socket to the Host

Game application. The XML message has all the data

needed for the Host Game application to extract which toy

has triggered the event, and its new status. For example, the

“Player 1’s Hero has got the Sword” event will be coded in

XML this way:

<EVENT toyName="Hero" copy="1" eventype="sensor"

 sensorName="Arms">

 <Hero posX="0.4" posY="0.2" angle="2.2">

 <Arms status="Sword_present"/>

 </Hero>

</EVENT>

Given the high processed events that the Widget Layer

sends to the Host application, coding a tangible tabletop

game is a very straightforward task that does not require the

developer or even the designer to have advanced

programming skills, as the next section will show.

CODING A TANGIBLE TABLETOP GAME

Figure 10 sketches the code structure of the Host Game for

our application scenario, the “Dragon’s Cave” game,

comparing the different code implementations required

using an EIL toolkit and our ToyVision Toolkit. In both

situations, as the Framework and the Host application are

independent applications, practically any computer

development environment can be used to code as it only

requires a TCP-IP socket client in the Host to connect it

with the Framework application.

Figure 10. Code of the “Dragon’s Cave” game. Left. Using an

EIL frameworks. Right. Using ToyVision framework.

In an EIL toolkit, developers just receive from the

Framework events triggered by fiducials being added,

moved and removed from the table surface. Any other

interactions with the playing pieces have to be dealt by

implementing an Arduino API in charge of receiving low

level data from electronic sensors, and sending low level

commands to electronic actuators.

In the ToyVision toolkit, developers just have to deal with

high abstract XML messages through an API composed of

two functions:

The toyActuator function builds an XML command for a

playing piece actuator and sends it through the socket.

The tabletopEvent is a callback function that is

automatically summoned each time a message arrives from

the Framework. This function reads the XML event, checks

which playing piece triggered the event, and selects the

specific code to run for each one.

Provided by the ToyVision Widget Layer, the task of

coding a tangible game consists on reading and building

XML messages straight related with the playing pieces, and

it is completely isolated of playing pieces hardware

implementation details.

CONCLUSION

The ToyVision Toolkit offers designers of computer board-

games tools that help them to digitally enrich conventional

playing pieces to support a great variety of manipulations

and actions from the players and the computer system. This

has been achieved by adding a new abstraction layer (the

Widget layer) to an Event Interpretation Layered oriented

framework (ReacTIVision) and the development of a

Graphic Assistant tool in which the designers model each

playing piece as tangible controls of the game application.

ToyVision contributes to the consolidation process that

tabletop devices and the TUI paradigm have experienced

during recent years by creating new “design-thinking”

prototyping tools to create TUI applications.

A beta version of ToyVision can be downloaded from

www.toyvision.org and can be used and modified under an

open-source license. ToyVision’s next future work is

focused in its evaluation. For this purpose, we plan to carry

out a user exploration workshop and to analyse its

performance with objective final users. There are also plans

to expand the tangible possibilities of playing pieces, even

outside the tabletop surface. Different kinds of tangible

tabletop pieces extending beyond board games will also

come within the scope of our work.

ACKNOWLEDGMENTS

This work has been partly financed by the Spanish

Government through the DGICYT contract TIN2011-

24660.

REFERENCES

1. Antle, A.N., Bevans, A., Tanenbaum, J., Seaborn, K.,

and Wang, S. Futura: design for collaborative learning

and game play on a multi-touch digital tabletop. Fifth

international conference on Tangible, embedded, and

embodied interaction (TEI '11). ACM, pp. 93-100.

2. Bespoke: http://www.bespokesoftware.org/multi-touch

3. Bollhoefer, K. W., Meyer, K., and Witzsche, R..

Microsoft surface und das Natural User Interface (NUI).

Technical report, Pixelpark, Feb. 2009.

4. CCV: Community Core Vision Web:

http://nuicode.com/

5. Cooper, N., Keatley, A., Dahlquist, M., Mann, S., Slay,

H., Zucco, J., Smith, R., and Thomas, B. H. Augmented

Reality Chinese Checkers. In Proceedings of the 2004

http://www.bespokesoftware.org/multi-touch
http://nuicode.com/

ACM SIGCHI international Conference on Advances in

Computer Entertainment Technology (2004). ACE '04,

vol. 74. pp.117-126.

6. Costanza, E., Shelley, S. B., Robinson, J. Introducing

audio d-touch: A tangible User Interface for Music

Composition and Performance. DAFx '03 Conference.

7. Cottam, M., & Wray, K.. Sketching Tangible Interfaces:

Creating an Electronic for the Design Community. IEEE

Computer Society, (2009, June). Pp. 90-95.

8. Dey, A.K., Abowd, G.D., Salber, D. A conceptual

framework and a toolkit for supporting the rapid

prototyping of context-aware applications. Human-

Computer Interaction, 2001, v.16 n.2, pp. 97-166.

9. Echtler, F., Klinker G. A multitouch software

architecture. In Proc of NordiCHI '08. pp. 463- 466.

10. Greenberg,S. and Fitchett, C. Phidgets: easy

development of physical interfaces through physical

widgets. In UIST ’01, pages 209–218.

11. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S. and

Serra, T. PyMT: a post-WIMP multi-touch user

interface toolkit. International Conference on Interactive

Tabletops and Surfaces (ITS '09). ACM, pp. 17-24.

12. Hartmann, B., Klemmer, S.R., and Bernstein, M.d.

tools: Integrated prototyping for physical interaction

design. IEEE Pervasive Computing, 2005.

13. Heijboer M, and van den Hoven, E. Keeping up

appearances: interpretation of tangible artifact design.

5th Nordic conference on Human-computer interaction:

building bridges (NordiCHI '08). ACM, pp. 162-171.

14. Heng, X., Lao, S., Lee, H., and Smeaton, A. A touch

interaction model for tabletops and PDAs. In Proc. PPD

’08.

15. Hinske, S. and Langheinrich, M. W41K: digitally

augmenting traditional game environments. 3rd

international Conference on Tangible and Embedded

interaction (2009). TEI '09, ACM. pp. 99- 106.

16. Holmquist L.E., Redström, J., Ljungstrand, P. Token-

Based Access to Digital Information. 1st international

symposium on Handheld and Ubiquitous Computing

(1999), p.234-245

17. Iwata, T., Yamabe, T., Poloj, M., and Nakajima, T.

Traditional games meet ICT: a case study on go game

augmentation. Fourth international conference on

Tangible, embedded, and embodied interaction (TEI

'10). ACM, pp. 237-240.

18. Joliffe D. Arduino fever. MAKE V7, pp. 52–53, 2006

19. Kaltenbrunner, M., Bovermann, T., Bencina, R., and

Costanza, E. TUIO: A protocol for table-top tangible

user interfaces. In 6th Int'l Gesture Workshop, 2005.

20. Kimura, H., Tokunaga, E., Okuda, Y., and Nakajima, T.

CookieFlavors: easy building blocks for wireless

tangible input. In CHI '06 extended abstracts on Human

factors in computing systems (CHI EA '06). ACM, pp.

965-970

21. Klemmer, S.R., Li, J., Lin, J., Landay J.A. Papier-

Mache: Toolkit support for tangible input. SIGCHI

conference on Human factors in Computing Systems

(CHI’04). Pp. 399-406

22. Leitner, J., Haller, M., Yun, K., Woo, W., Sugimoto,

M., Inami, M., Cheok, A. D., and Been-Lirn, H. D.

Physical interfaces for tabletop games. Comput.

Entertain. 7, 4, Article 61 (January 2010), 21 pages.

23. Libavg web http://www.libavg.de/

24. Lin H.-H., and Chang, T.-W. A camera-based multi-

touch interface builder for designers. In Human-

Computer Interaction. HCI Applications and Services,

2007.

25. Marco, J., Cerezo, E., and Baldassarri, S. ToyVision: A

Toolkit for Prototyping Tabletop Tangible Games. The

fourth ACM SIGCHI EICS 2012.

26. Mikhak, B., Lyon, C., & Gorton, T. The Tower system:

A toolkit for prototyping tangible user interfaces.

Submitted as a long paper to CHI 2003

27. Openexhibits web: http://openexhibits.org

28. Reactivision: http://reactivision.sourceforge.net/

29. Rogers, Y. and Rodden, T. Configuring spaces and

surfaces to support collaborative interactions. In O’Hara,

K., Perry, M., Churchill, E. and Russell, D. (eds.) Public

and Situated Displays. Kluwer Publishers. 2004. pp. 45-

79.

30. Shaer, O. and Jacob, R.J.K. A specification paradigm

for the design and implementation of tangible user

interfaces. ACM Trans. Comput.-Hum. Interact. 16, 4,

Article 20 (November 2009), 39 pages.

31. Schöning, J., Hook, J., Motamedi, N., Olivier, P.,

Echtler, F., Brandl, P., Muller, L., Daiber, F., Hilliges,

O., Löchtefeld, M., Roth, T., Schmidt, D. and von

Zadow, U. Building Interactive Multi-touch Surfaces.

JGT: Journal of Graphics Tools. 2009. Springer.

32. Shen, C., Vernier, F., Forlines, C., and Ringel, M.

DiamondSpin: an extensible toolkit for around-the-table

interaction. In Proc. CHI ’04, pages 167–174, 2004.

33. TouchLib: http://nuigroup.com/touchlib/

34. Trackmate: http://trackmate.sourceforge.net/

http://trackmate.sourceforge.net/

