
Lowering the threshold and raising the ceiling
of tangible expressiveness in hybrid board-games

Javier Marco & Eva Cerezo & Sandra Baldassarri

Received: 28 February 2014 /Revised: 23 July 2014 /Accepted: 23 September 2014
Springer Science+Business Media New York 2014

Abstract Tabletop devices offer an attractive environment for the creation of hybrid board-
games that seamlessly integrate physical and digital interaction. However, the prototyping of
Tangible User Interfaces involves the integration of physical and virtual aspects, challenging
both designers and developers, and hindering the rapid exploration of richer physical interac-
tions with the game. Although the recent appearance of tabletop frameworks has helped to
lower the threshold for coding tangible tabletop applications, the cost is a serious limitation on
the degree of expressiveness of the tangible interaction. This paper presents “ToyVision”, a
software framework for the prototyping of tabletop games based on the manipulation of
conventional playing pieces. ToyVision architecture is based on a Widget layer of abstraction
that is able to express the manipulation of playing pieces in the context of the game. This
Widget layer supports a wide range of passive and active manipulations with conventional
objects. Designers and developers can visually model all passive and active manipulations
involved in their game concepts in a Graphic Assistant, and test them immediately in a tabletop
device. The paper also describes a set of evaluation sessions which demonstrate that ToyVision
has been effective in lowering the threshold of developing applications for tabletop devices,
while being sufficiently expressive to give support to innovative concepts for hybrid games
that fully explore the tangible feasibilities of conventional playing pieces.

Keywords Tabletop . Framework . Tangible . Board-games . Hybrid games . Playing pieces .

Design . Prototyping

Multimed Tools Appl
DOI 10.1007/s11042-014-2298-2

J. Marco (*)
GIGA Affective Lab Computer Science Department, Universidad de Zaragoza, Zaragoza, Spain
e-mail: jmarco2000@gmail.com

E. Cerezo : S. Baldassarri
GIGA Affective Lab, Computer Science Department, Engineering Research Institute of Aragon (I3A),
Universidad de Zaragoza, Zaragoza, Spain

E. Cerezo
e-mail: ecerezo@unizar.es

S. Baldassarri
e-mail: sandra@unizar.es

1 Introduction and motivation

One of the emerging research fields in Human-Computer Interaction (HCI) is concerned with
innovative interaction techniques that aim to provide a more seamless bridge between the
physical and digital worlds. Tangible User Interfaces (TUI) aim to give physical form to digital
information by coupling physical manipulations of conventional objects with computational
systems [19].

Games and entertainment computer applications are especially prolific in putting into
practice the TUI paradigm, giving rise to a new generation of hybrid games which combine
traditional physical playing with the new possibilities of digitally augmenting the player’s area
with computer image and audio feedback. Large horizontal interactive surfaces (or tabletop
devices) are emerging as an ideal environment for these innovative hybrid games [14, 25].
Traditionally, conventional tables are popular spaces for social board-games due to their
physical affordances that engage face-to-face interaction [38]. Players sit around the table
and interact with the game by dragging and manipulating physical playing pieces on
the table surface. Tabletop computer systems provide the possibility of digitally aug-
menting the game area while keeping playing pieces in the player’s physical environ-
ment, thus reinforcing the emotional impact of videogames [21, 16] and making digital
technology accessible to other user profiles such as very young children [32], users
with disabilities [26] and senior citizens [1].

Due to the relative youth of TUI research, designers and developers working in this field
face a number of challenges which involve dealing with potentially complex manipulations
with objects, non-standardized computer platforms and electronic sensors and actuators. In
contrast to the design of traditional WIMP (Windows, Icon, Menu, Pointer) user interfaces,
TUI involve dealing with both software and hardware components from the beginnings of the
design process. Detecting physical manipulations requires embedding sensing hardware into
the objects, receiving and sending raw electronic signals to the computer system, and coding
hardware level algorithms to translate raw data from hardware into meaningful playing-piece
manipulations. Interaction designers do not necessarily have all these technical skills, and so
the prototyping of a TUI requires interdisciplinary teams including interaction designers,
electronic engineers and specialized software developers. This situation can cause a breach
between design decisions and the corresponding implementation tasks (i.e. between designers
and developers) which results in prototypes that are difficult to adapt to design changes and in
hindering designers from freely exploring all the feasibilities of coupling conventional playing
pieces with a computer game.

To address this issue, a broad variety of heterogeneous and very specialized frameworks
have evolved over the last few years giving support to the development of tabletop applica-
tions independent of the hardware. As stated by Myers et al. [34], frameworks are tools that
aim to make the rapid prototyping of user interfaces easier and enable more iterations during
the design process by lowering the threshold of developing the system while retaining a high
ceiling of expressiveness. The threshold is the difficulty of learning and using a system, which
is connected with the development process, while the ceiling captures the complexity of what
can be built using the system, which is directly related with the design process.

Early tabletop frameworks only supported the development of very basic tactile tabletop
applications by merely informing developers about raw-tactile events (finger added, moved,
taken away from the table) [42, 3, 27, 40, 29], thus isolating developers from the tabletop
hardware details. More recent tabletop frameworks have raised the ceiling of expressiveness of
multitouch interaction by supporting more complex off-line tactile gestures (zoom, rotation,
delete …) on the tabletop surface [15, 13, 35]. A few tabletop frameworks also support

Multimed Tools Appl

interaction with conventional objects on the table surface [36, 6, 4, 43, 23], opening up the
possibility of prototyping TUI for tabletops. However, as can be seen in the next section,
current tabletop frameworks with TUI support, have low expressiveness for designers willing
to create hybrid board-games, since they only support simple passive manipulations: object
added, moved, taken away from the table by the user . Thus, the status of a playing piece in the
game can only be dependent of its position on the board. In conclusion, the expressiveness of
the games that can be created with current frameworks is limited to simple board-games in
which players are restricted to arrange different playing pieces on the board (e.g. tic-tac-toe,
snake-and-ladders, ludo, chess…). However, very frequently, board-games require from
players other kinds of passive manipulations with the playing pieces in order to change their
status in the game. For example, in the Trivial Pursuit™ game, players arrange small pie-
shaped playing pieces inside their tokens to represent their status on the game (see Fig. 1-left).
The same way, many board-games (e.g. Twister™) have spinner playing pieces which players
manipulate in order to trigger random events on the game (see Fig. 1-centre). Current tabletop
frameworks have only expressiveness to identify these playing pieces on the board and track
their position; however, no current framework is giving support to identify the different
statuses that the Trivial Pursuit and the spinner playing pieces can have during the game.

Furthermore, many conventional board-games have playing pieces that players must
manipulate during the game but that, in fact, do not belong to any player. For example, in
the classic board-game Cobra’s Island™, players have to fight and slay a miniature cobra
playing piece (see Fig. 1-right). This playing piece is passive; therefore, each turn, the player
has to move his/her playing piece, and also the cobra playing piece according to game rules.
By translating this game to a hybrid board-game, it would be possible to make the cobra
playing piece active by embedding electronic actuators and connecting them to the computer
system. However, this would not be an easy task with current frameworks, and it requires from
designers advanced technical skills such as electronics, communication protocols, etc.

This paper presents ToyVision: a framework for the prototyping of hybrid videogames for
tabletop devices. The main contribution of ToyVision is the inclusion of an abstraction layer on
an existing tabletop framework. The new abstraction layer has been designed to support a wide
range of passive and active manipulations of playing pieces involved in hybrid board-games.
Being provided with this new layer, ToyVision not only raises the ceiling of expressiveness of
tangible interaction in tabletop devices, but also lowers the threshold of implementing hybrid
board-games. Designers can model customized passive and active manipulations in playing
pieces and evaluate them without requiring advanced electronics and coding skills. Moreover,
ToyVision simplifies the coding process by informing developers about the status of playing
pieces, with meaningful events directly related to playing piece manipulations.

Fig. 1 Different conventional playing pieces. Left: Trivial Pursuit™ token. Centre: spinner. Right: passive cobra
playing piece

Multimed Tools Appl

This paper continues and extends the work previously presented in [31] and [30], contain-
ing a deep analysis of the state of the art of tabletop frameworks, detailing the complete
process of prototyping a well-known tabletop tangible application with ToyVision and, more
important, presenting a set of evaluations that qualitative and quantitatively assess the benefits
of using ToyVision.

The paper first examines the current state of the art in frameworks and tools supporting
tangible interaction in tabletop devices in Section 2. In section 3, the adoption of a tangible
modelling language to express active and passive manipulations is explained. Section 4 details
the ToyVision framework architecture. Section 5 describes the process of prototyping tabletop
games through a practical example. The evaluation carried out with ToyVision is detailed in
Section 6. Finally, the conclusions and proposals for future work are outlined.

2 Related work: tabletop frameworks for tangible interaction

Due to the recent success of tabletop active surfaces, several software frameworks have
emerged for using in rapidly developing hardware-independent tabletop applications. Howev-
er, as stated before, the majority focus on supporting tactile interaction and relatively few
tabletop frameworks target the prototyping of tangible interaction.

Table 1 lists current tabletop frameworks that provide support for interaction with objects
manipulated on the tabletop surface. It must be taken into account that the table analyses only
tangible (not tactile) interaction functionalities.

The first column classifies the framework architecture. Echtler and Klinker [9] described
the architecture of tabletop frameworks using four layers of abstraction from the lowest to the
highest: Hardware, Calibration, Event Interpretation and Widget. A framework that follows a
layered architecture (Fig. 2) offers at least the Hardware Layer in order to hide the low-level
algorithms that obtain raw data from the tabletop hardware. Optionally, the framework can add
the Calibration layer to correct the position coordinates of each detected finger and object due
to hardware aberrations. In the Event Interpretation layer, the framework keeps track of basic
tactile events (“finger” added, moved or removed from the tabletop surface) and tangible
events (“object” added, moved or removed from the tabletop surface). Finally, by adding the
Widget layer, the framework may associate sequences of events in tabletop regions with
predefined actions in the tabletop host application. Most current tabletop frameworks are
based on an Event Interpretation layer [6, 10, 4, 41, 36, 43, 28] that triggers generic tangible
events when objects are manipulated on the tabletop surface. This means that all tabletop host
applications will receive the same generic events and consequently these have to be interpreted
to give them meaning in the context of the tabletop application. On the other hand, Widget
layer architectures are becoming common in frameworks supporting multitouch interaction
[15, 13, 35]. In these frameworks, the Widget layer is responsible for processing off-line tactile
gestures with a specific meaning in the application (zoom, delete, select…). However, this
Widget approach is, at present, not being followed in tangible interaction. Only the Papier-
Mâché [23] and the RoboTable [24] frameworks can be considered as Widget layered
architectures. The Papier-Mâché Widget layer is capable of giving meaning to generic tangible
events sent by the Event Interpretation layer, and this meaning is directly related to a specific
action in the tabletop host application; e.g., placing a post-it note on the tabletop surface means
opening a web page; thus, the Papier-Mâché Widget layer will inform the tabletop application
to open the web page. The RoboTable Widget layer is exclusively aimed at managing
autonomous movements on a robotic toy at a high level of abstraction; e.g., when the robot
is placed on a specific tabletop area it performs a series of predefined movements.

Multimed Tools Appl

T
ab

le
1

C
om

pa
ri
so
n
of

di
ff
er
en
t
ta
bl
et
op

fr
am

ew
or
ks

w
ith

su
pp
or
t
fo
r
de
ve
lo
pi
ng

T
U
I

Fr
am

ew
or
k

A
rc
hi
te
ct
ur
e

Pl
at
fo
rm

To
ol
s

M
an
ip
ul
at
io
ns

D
ev
el
op
m
en
t

en
vi
ro
nm

en
t

C
om

m
un
ic
at
io
n

pr
ot
oc
ol

Pa
ss
iv
e

A
ct
iv
e

Ty
pe

H
ar
dw

ar
e

Ty
pe

C
C
V

E
ve
nt

In
te
rp
re
ta
tio

n
C
ro
ss

pl
at
fo
rm

T
U
IO

x
Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

G
ra
ff
iti

E
ve
nt

In
te
rp
re
ta
tio

n
C
ro
ss

pl
at
fo
rm

T
U
IO

x
Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

Pi
xe
lS
en
se

SD
K

E
ve
nt

In
te
rp
re
ta
tio

n
M
S
V
is
ua
l
C
+
+

x
x

Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

Pa
pi
er
-M

âc
hé

W
id
ge
t

M
S
V
is
ua
l
C
+
+

x
G
ra
ph
ic
A
ss
is
ta
nt

Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
R
FI
D

x

Pr
ot
oA

ct
iv
e

E
ve
nt

In
te
rp
re
ta
tio

n
M
S
V
is
ua
l
C
+
+

x
x

Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

R
ea
ct
iv
is
io
n

E
ve
nt

In
te
rp
re
ta
tio

n
C
ro
ss

pl
at
fo
rm

T
U
IO

x
Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

R
ob
oT

ab
le

W
id
ge
t

O
w
n

x
G
ra
ph
ic
A
ss
is
ta
nt

Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

2D
M
ov
e

T
ra
ck
M
at
e

E
ve
nt

In
te
rp
re
ta
tio

n
C
ro
ss

pl
at
fo
rm

O
SC

x
Pl
ac
e
2D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s

x

L
ib
T
is
ch

E
ve
nt

In
te
rp
re
ta
tio

n
C
ro
ss

pl
at
fo
rm

O
SC

x
Pl
ac
e
3D

M
ov
e
R
em

ov
e

V
is
ua
l
Fi
du
ci
al
s
K
in
ec
t

x

Multimed Tools Appl

The second column in Table 1 analyses cross-platform support. Early frameworks targeted
a specific development platform; Pixelsense SDK and Papier-Mâché target MS Visual C++.
Nowadays, frameworks have adopted a client-server architecture in order to become indepen-
dent from the development environment (see Fig. 2): tabletop events are thus transported via a
network protocol. In this way, host applications can be developed in any programming
environment provided by a network communication can be implemented. In this context,
the OSC [45] and TUIO protocols [22] have become very popular and have been adopted by
most tabletop frameworks [36, 6, 28, 43, 10]. Both protocols have similar characteristics since
TUIO can be considered an evolution of OSC. Both aim to communicate generic events from a
wide range of interactive devices (musical instruments, active surfaces…) to a host application.
When used in a tabletop framework, these protocols can be used to transmit generic tactile and
tangible events, embedded in binary packets using UDP network communication sockets.

Fig. 2 Echtler and Klinker’s layered framework architecture for tabletop applications. The tabletop framework
acts as an intermediary application between the tabletop hardware and the host application

Multimed Tools Appl

The third column in Table 1 analyses the support tools that frameworks additionally provide
to facilitate the prototyping of tangible tabletop applications. Most current frameworks are
“non-interactive” applications. They run in background, dealing with the tabletop hardware,
and sending tabletop events. During this process, they do not require user intervention. On the
other hand, the Papier-Mâché and RoboTable frameworks include an interactive Graphic
Assistant tool that designers may use to define specific application behaviours in response to
the manipulations of objects and to test these behaviours immediately on the tabletop. Since
Papier-Mâché and RoboTable are also the only frameworks that contain a Widget layer in their
architecture, graphic assistants would appear to have an important role in supporting Widget
layered architectures.

The last group of columns in Table 1 describes the kind of tangible manipulations supported
by each framework. This column is divided into passive (carried out by users) and active
(carried out by the system) manipulations.

Regarding passive manipulations, the Type column describes different feasible
object manipulations. All current tabletop frameworks with tangible support are
capable of tracking the position and orientation of objects on the tabletop surface.
To do this, all frameworks are based on visual based hardware (conventional or
infrared cameras) and on image processing algorithms. A few current frameworks
(CCV, Papier-Mâché and LibTisch) are able to visually identify different objects from
their shape; however, the visual algorithms used in these frameworks are not robust
enough when the objects’ shapes are very similar. For this reason all current frame-
works (with the exception of Papier-Mâché) use visual based tags (fiducials) for the
robust tracking of objects. A fiducial is a printed marker (generally black and white)
with very simple topological designs than can be easily recognized by well-known
image processing algorithms. When different fiducials are attached to the base of each
object involved in the TUI, the framework is able to identify them when they are
directly placed on or removed from the tabletop surface and to track their movements
when they are dragged (2D position and orientation) on the tabletop surface. Fiducials
have become very popular for the quick development of tangible tabletop application,
since they are very easy to use and are hardware independent (any conventional video
camera can be used to track fiducials). The only framework not supporting this
fiducial technique, the Papier-Mâché framework, uses a combination of shape visual
recognition algorithms and RFID tagging in order to identify objects. While RFID
chips were very popular in tangible application prototypes some years ago, they have
now been replaced by fiducials since the latter are more versatile and provide more
robust identification and tracking of objects on a wide surface. Finally, all current
frameworks are limited to tracking objects which are directly placed on the surface,
with the exception of LibTisch which is also capable of tracking movements of
objects manipulated over the tabletop surface, extracting also their relative height
(3D coordinate); however, this functionality makes the LibTisch framework more
hardware dependent as it is based on a Microsoft Kinect sensor.

Regarding active manipulations, no current tabletop framework provides support to create
reactive objects with the single exception of the RoboTable framework. However,
RobotoTable is very restricted in the kind of objects supported for reactive manipulations,
being limited to an electronic robotic toy, specifically built for this framework, which is
capable of autonomous 2D movements on the tabletop surface. RoboTable does not therefore
support tangible manipulations with conventional objects. In the context of TUI prototyping, it
is necessary to embed electronic sensors and actuators into the objects in order to design and
implement active manipulations for them. Sensors provide context-aware information from an

Multimed Tools Appl

object’s environment (light, contact pressure, temperature…), while actuators can
change some physical properties of the object (movement, colour change, shape
change…). Also, the computer system has to be able to retrieve data from the sensors
and to actuate the actuators. This requires an electronic microcontroller board which
converts sensor and actuator raw signals into something manageable by the computer
system. In conclusion, the prototyping of active manipulations requires advanced
electronic skills. Several commercial and open-hardware toolkits have appeared to
provide these processes [12, 33, 2]. These hardware toolkits contain a set of electronic
microcontrollers, sensors and actuators which can be used by designers to easily
assemble and embed the sensors and actuators into conventional objects, and to
connect them to a computer system. The problem is that no current tabletop frame-
work offers support to any hardware toolkit, so developers have to implement
hardware level algorithms in their tabletop host applications in order to deal with
raw data coming from microcontroller boards.

After having analyzed the tangible functionalities of current tabletop frameworks, several
conclusions can be reached:

& The architecture of a tabletop framework has a strong impact both on the threshold of
prototyping a tabletop application and on the ceiling of expressiveness of the tangible
manipulations. Event Interpretation based architectures send generic events about “every-
thing” that the tabletop hardware has detected on the tabletop surface. The developer has to
code complex algorithms to process all those events, filtering them and finding relation-
ships relevant in the context of the host application. Tangible expressiveness is, therefore,
limited to the data provided by the event interpretation layer that entirely consists of
generic manipulations completely out of context of the tabletop host application. On the
other hand, current tabletop frameworks based on a Widget layer architecture are using the
Widget layer in a very limited way, merely associating the position of an object on the
tabletop with an action in the application, and thus missing other feasible object
manipulations.

& Cross-platform frameworks help to lower the threshold of developing applications, since
developers can choose the programing language more appropriate to their skills. However,
client-server architectures based on transmitting binary packages also limit the expressive-
ness of the information that the framework sends to the host application.

& Including additional tools in a framework can help to lower the threshold of developing the
host application. Graphic assistants have been successfully used in the context of WIMP
interfaces [11] saving coding resources during the implementation of interactive forms. A
similar approach is being followed by a few current tabletop frameworks that include a
graphic assistant capable of automatically generating code from the information provided
by the designer. The relationship between the graphic assistant and the Widget layer
architecture is also relevant. The graphic assistant helps developers to define all the
tangible manipulations to be interpreted by the Widget layer from the events coming from
the Event Interpretation layer.

& Current frameworks consider objects as mere “moveable” entities, both for passive and
active manipulations. Other feasible manipulations such as the manipulation of just part of
an object (e.g. opening and closing the lid of a box) or the combination of different objects
(e.g. placing an object inside a box) are not supported by current frameworks. It can be said
that this is a direct consequence of the framework architecture and the limitations of the
communication protocols that have been designed targeting only these specific manipula-
tions, leaving out the possibility of considering other passive and active manipulations.

Multimed Tools Appl

Considering this analysis of the state-of-art of tabletop frameworks supporting the
prototyping of TUI, our objectives when designing ToyVision were:

& to follow a Widget Layer architecture approach, supported by a graphic assistant tool. The
Widget layer should be capable of interpreting any feasible passive and active manipula-
tions and expressing them in the context of the host tabletop application. The graphic
assistant should support designers and developers to visually model all the active and
passive manipulations involved in the host application.

& to be cross-platform, using a client-server approach, but with a communication protocol
not constrained to the kind of data to be transmitted in order to avoid limiting the
expressiveness of the messages transmitted by the ToyVision Widget layer. The ToyVision
communication protocol could be based on XML-compliant messages: this way the
ToyVision Widget layer would be able to adapt the data packed into the messages to the
specific manipulations involved in the host application.

& to support a wide range of active and passive manipulations of conventional
objects; in particular, the arrangement of different objects into a compound object
(inserting/removing an object into/from another one), and the manipulation of
objects with moveable pieces (moving/rotating part of an object). In order to detect
and identify passive manipulations, ToyVision should support generic visual based
tabletop hardware, using fiducials to track the movements of objects directly placed
on the tabletop surface.

A direct consequence of these objectives will be the raising of the ceiling of the tangible
expressiveness while keeping the threshold low for developing tabletop applications
supporting tangible interaction.

The main challenge of creating a framework with a high ceiling of tangible expressiveness
lies in being able to express all the feasible manipulations with conventional objects in a
language understandable by a digital system. The following section describes the adoption of a
modelling language in ToyVision to support designers in expressing all passive and active
manipulations involved in their tabletop applications.

3 Modelling manipulations on tabletop games

3.1 Describing a TUI with the TUIML

Despite many attempts at defining and categorizing the expressiveness of object manipulations
in a digital system [18], currently there is no single approach for exploiting the physical
affordances of objects in a framework for the prototyping of TUIs. The “Token” approach [17]
was one of the first and more popular approaches to formalize the link between object
manipulations and the digital system. This was later updated by Shaer and Jacob [39] in the
Token+Constraint+TAC paradigm. This paradigm introduces a compact set of vocabulary and
means to systematically describe the structure and functionality of a large subset of TUIs. This
set of constructs aims to allow any TUI designer to specify his or her designs while considering
all the physical affordances of conventional objects. What is interesting about Shaer and
Jacob’s proposal is that they also present the Tangible User Interface Modeling Language
(TUIML) based on the Token+Constraint+TAC paradigm. Using the TUIML, designers can
visually describe in terms of Tokens, Constraints and TACs the different relationships between
physical objects and digital information in their TUI concepts. The main contribution of the

Multimed Tools Appl

TUIML is that its visual representations can be automatically translated into a computational
system using a computer language such as XML.

To visually describe any TUI, the TUIML uses a hierarchical structure of Tokens, Con-
straints and TACs (see Fig. 3).

A token is any graspable object involved in the TUI. A token’s physical properties may
dictate how it is to be manipulated in the TUI.

Tokens can also act as containers of other tokens. The container token has one or more
physical constraints associated to it which limit the manipulation of the other tokens. Both
user and system (passive and active interaction) can manipulate tokens inside a constraint in
two possible ways:

Fig. 3 TUIML visual representation based on the Token+Constraint+TAC paradigm

Multimed Tools Appl

& Associating digital data. By filling, emptying, or reassigning tokens inside the constraint,
different digital states are assigned to the container token. For example, the playing piece
used in the Trivial Pursuit board game is divided into six compartments (constraints) in
which little colored tokens can be inserted to represent the player’s status in the game.

& Manipulating digital data. By moving or rotating tokens in the constraint, the user varies
the digital state of the container token in the TUI. For example, a kitchen timer has a knob
attached that, when rotated, varies the alarm time.

Depending on who carries out the manipulations (the user or the system), a constraint is
defined as:

& A Passive Constraint. This defines a physical limitation on the user’s manipulations within
the playing piece. Tokens with passive constraints are composed of moveable or remov-
able smaller pieces. By manipulating them (inserting, removing, rearranging or moving
them), the user is effectively changing the status of the token in the TUI.

& An Active Constraint. In order to provide a token with active manipulations (autonomous
movement, sound, colour change…), electronic actuators are embedded in the object. This
can also represent a constraint since electronic components have a limited (constrained)
range of actuation.

In order to describe passive and active manipulations on a constraint, one or more TACs
(Token And Constraint relationship) have to be associated to the constraint. ATAC expresses a
physical status of an object with some meaning in the tangible application. Activating a TAC
involves whether the user is physically manipulating a token with respect to its constraint, or
whether the system is electronically manipulating an actuator. Manipulation of a token outside
a constraint has no effect on the tangible application; however, its manipulation inside the
constraint has a very specific meaning in the application which is described by the associated
TACs. Depending on how this meaning is described, a TAC can be defined either as a
Representation or Manipulation TAC:

& Representation TAC: The meaning of a token manipulation is described by a numerical
value (variable) limited within a range of values. This value describes a physical property
of the token manipulated within a passive constraint or a value to be applied to an
electronic actuator associated to an active constraint. For example, in a kitchen timer, a
representation TAC will be associated to the knob in order to represent the numerical value
of the alarm time (in minutes).

& Manipulation TAC: The meaning of a manipulation is described by a name. The name
defines a very specific status of the token within its passive constraint or of an electronic
actuator associated to an active constraint. For example, in the Trivial Pursuit playing
piece, a list of manipulation TACs will represent different game achievements by a
different name (science, arts, geography…).

In Shaer and Jacob’s work, TUIML was used as a theoretical framework to describe a wide
range of well-known TUIs. Despite the fact that TUIML was developed so that any TUI visual
representation could be automatically translated into a computer language (e.g. XML), at
present there is no practical implementation of TUIML. ToyVision is the first software
framework that has adopted TUIML to express all tangible manipulations with conventional
playing pieces in hybrid board games. However, some updates to the original TUIML have
been required in order to adapt it to the board-game context. These are described below.

Multimed Tools Appl

3.2 Extending TUIML to model hybrid tabletop games

3.2.1 ToyVision TUIML

In board games, the physical appearance of playing pieces defines their role in the game; for
example, the color of the playing piece usually identifies the player to whom it belongs. In
order to express the most common roles of playing pieces in board-games, ToyVision
TUIML introduces three new categories of tokens: Simple, Named and Deformable
Tokens (see Fig. 4).

& Simple Tokens (see Fig. 5a): Simple tokens are the most common playing pieces
in board-games: checkers, marbles, chips, etc. Players arrange a limited amount
of playing pieces on the board according to game rules (e.g. Checkers, Ludo,
Snakes and Ladders, Roulette, etc.). In general, simple tokens can be physically
described as small flat cylindrical pieces, all identical with the exception of the
colour used to distinguish the piece of each player, or to give different values
(money, points, etc.).

& Named Tokens (see Fig. 5b): Other kinds of playing pieces are assigned very
specific roles in the rules of the game and have a unique name. These are
perceived by the player through their physical appearance. A classic example is
in chess: the castle has a different appearance than the pawn and they are subject
to different rules.

& Deformable Tokens (see Fig. 5c): There are other playing pieces which do not have a
constant shape, as they change with the manipulations of the player. These are made of
malleable materials such as clay, cardboard or cloth. Children usually play with these
materials in craft activities.

Due to the technical limitations of visual-based tabletop devices, ToyVision TUIML
only supports the creation of constraints in named tokens. Simple tokens are usually
small pieces in which it is physically difficult to embed passive and active constraints.
Similarly, it is physically difficult to create a physical constraint in an object with an
undefined shape. In any case, ToyVision TUIML is sufficiently expressive to model
common passive and active manipulations in hybrid games for tabletop devices. In
order to validate this assertion, a workshop session was organized in order to gain
initial practical experience with interaction designers using ToyVision TUIML. Details
of this workshop are now described.

Fig. 4 TUIML extended to cover playing piece roles

Multimed Tools Appl

3.2.2 Validating TUIML expressiveness

A workshop was organized at an international conference on HCI with the aim of validating
the hypothesis that ToyVision TUIML is sufficiently expressive to model tangible interaction
in tabletop devices. Seven interaction designers participated during a three and a half hour
practical session. Six participants were Master students and one was an academic lecturer, all
working in the field of Interaction Design. Five of the participants had some prior experience
in designing TUI.

During the session, each participant had to ideate and create a playing piece suitable for use
as a tangible token on a tabletop game. The session was divided into the following stages:

1. An informative introduction to tabletop tangible games (15 min). Participants were
introduced to a visual based tabletop device, and some samples of hybrid games were
given.

2. Brief description of ToyVision TUIML (30 min). Participants were introduced to the
Token+Constraint+TAC paradigm. Each participant was provided with a printed TUIML
template.

3. Concept creation (30 min). Participants worked individually ideating a new concept of a
playing piece to be manipulated on a tabletop game. Each participant had to express their
new concept drawing its TUIML representation on paper.

4. Prototyping (120 min): Participants had to build low-tech prototypes of their concepts.
They had at their disposal hand-craft materials (pens, paper, foam, cardboard, scissors,
glue, etc.) to build their prototypes (see Fig. 6).

Two coordinators assisted in the workshop session. One was in charge of introducing
participants to the workshop tasks, explaining the use of the ToyVision TUIML and giving

Fig. 6 ToyVision TUIML workshop session

Fig. 5 Conventional board-game playing pieces classified as (a) Simple Tokens, (b) Named Tokens, (c)
Deformable Tokens

Multimed Tools Appl

technical support to participants during the prototyping. The second coordinator took obser-
vation notes, focusing on the participants’ problems and questions.

By the end of the session, all participants had created their own playing pieces (see Fig. 7)
together with their visual TUIML representations.

Three examples of playing pieces and their respective TUIML representations created
during the workshop session are presented in Figs. 8, 9 and 10. Figure 8 shows a prototype
of a tank playing piece for a tabletop videogame. Turret orientation is controlled by means of
moving the small red piece along the circular groove (physical constraint). Shooting the
missile is carried out by pressing on the circular hole. Figure 9 shows a prototype of a piano
toy suitable for use in a tabletop musical game. The key movements are physically constrained
in such a way that, when pressed, the keys make contact with the tabletop surface and the
musical note is played. Figure 10 shows a prototype of a star-shaped musical instrument. Notes
are played by pressing on the points of the star. The sound pitch can be varied by means of
rotating the central knob.

All the playing pieces created during the workshop session were completely modelled using
ToyVision TUIML, thus assessing its expressiveness. Since TUIML visual representations can
be automatically translated into computer language, we argue that a software framework
rooted in TUIML would have a high ceiling of expressiveness. Moreover, none of the passive
manipulations involved in the new playing pieces created by the workshop participants were
supported by current tabletop frameworks, but all could be supported by ToyVision, as
explained in the following section.

4 ToyVision’s architecture: the widget layer

ToyVision’s architecture is based on an existing tabletop framework; ReacTIVision [36]. As
well as its Hardware, Calibration and Event Interpretation layers (see Fig. 2), it has two
additional features (see Fig. 11):

& Originally, the Reactivision hardware layer only supported the tabletop visual sensor
(digital camera). In ToyVision, the hardware layer has been upgraded to support com-
munication with electronic components embedded into the playing pieces. In order to
communicate the tabletop computer system with electronic sensors and actuators,
ToyVision’s hardware layer supports the Arduino platform [30], an open-hardware plat-
form which has become very popular for the development of tangible and ubiquitous

Fig. 7 Playing pieces created during the workshop session

Multimed Tools Appl

systems since it enables a wide range of electronic components to be easily connected to a
computer system via USB or Bluetooth. ToyVision therefore offers support for
implementing active manipulations of playing pieces.

& Originally, the Reactivision architecture was based on an Event Interpretation layer and the
TUIO communication protocol. The ToyVision framework has upgraded the Reactivision
architecture by including a new Widget layer which is composed of two elements: the
Graphic Assistant and the Widget Manager.

TheGraphic Assistant is a WIMP (Windows, Icon, Menu, Pointer) Graphic User Interface
that enables the designer to visually model each playing piece in TUIML. These models
provide all the data required by the Widget layer to perform its function. A first version of a
Graphic Assistant not based on the TUIML has been already published [31]. The new version
of Graphic Assistant presented in this paper fully implements ToyVision TUIML. In fact, The
TUIML visual representation created with the graphic assistant is automatically translated into
XML language and internally stored in ToyVision. This serves as a knowledge base for the
ToyVision Widget Manager.

The Widget Manager listens for fiducial, subtoken (can be small graspable objects or
user’s fingers, both visually identified as small circular white spots) and blob events coming
from the Event Interpretation layer, and identifies how these events are related to playing piece
manipulations (passive interactions). The Widget Manager uses the TUIML representations
of playing pieces to find these relations and creates XML-compliant messages to express the
playing piece status during the game. This XML message is formatted following the TUIML
hierarchy (Token, Constraints and TACs) and contains the updated status of the playing piece
as well as the kind of manipulation that triggered the event. Figure 12 shows the XML
structure of messages created by the Widget Manager. The “TokenName” tag identifies the
playing piece and its attributes describe its position and orientation on the table surface. If the
playing piece has more than one copy involved in the game, the “copy” attribute helps to
distinguish between them. The “TokenName” tag also contains an “event” attribute which

Fig. 9 Piano playing piece prototyped during the workshop and its TUIML

Fig. 8 Tank playing piece prototyped during the workshop and its corresponding TUIML

Multimed Tools Appl

indicates the kind of manipulation that triggered this event, which can be one of the following
values:

& Added: the “TokenName” playing piece has been placed on the table surface
& Updated: the “TokenName” playing piece has been moved on the table surface
& Removed: the “TokenName” playing piece has been removed from the table surface
& A Constraint name: the named constraint has changed its status.

Each time a playing piece changes its status, the Widget manager sends an XML message
to the host application through a TCP socket. The host game application only has to listen and
parse them to extract an updated status of each playing piece placed on the tabletop surface.
More details about coding the host application will be given in the next section.

The Widget manager also receives XML messages coming from the host application,
containing commands to be carried out on reactive playing pieces (active interactions). These
messages are translated into Arduino commands and sent to the Hardware Layer which is in
wireless communication with the Arduino microcontroller.

This new Widget layer aims to keep the threshold low for developing tabletop
games while raising the ceiling of expressiveness of passive and active manipulations
compared to other similar software frameworks. As Table 1 shows, only a few of the
current frameworks include a Widget layer of abstraction in their architectures, and
these frameworks do not offer more tangible expressiveness than other frameworks
based on an Event Interpretation layer architecture. The intrinsic difficulty of design-
ing a Widget layer supporting tangible interaction lies in finding a language, under-
standable by a digital system, capable of expressing all the feasible manipulations
with conventional objects. ToyVision is the first framework that has adopted a visual
modelling language (the TUIML described in previous sections) to express all tangible
manipulations involved in the application.

The following section shows, by means of a practical example, the process of prototyping a
tangible tabletop application using the distinctive features of ToyVision.

5 Prototyping with ToyVision

In contrast with the development of conventional computer applications, generating a tangible
application involves both physical and virtual tasks. Figure 13 sketches the complete process
of developing a tangible tabletop game supported by ToyVision.

Fig. 10 Star-shaped music instrument prototyped during the workshop and its TUIML

Multimed Tools Appl

Fig. 11 ToyVision framework architecture

Multimed Tools Appl

The next subsections give the details of each stage, exemplified with one of the pioneer
tangible applications for tabletop devices and well-known through academic literature: MetaDesk
[44]. MetaDesk (see Fig. 14) is a geographical application that enables users to navigate a city
map projected on the tabletop surface by manipulating a set of objects on the same surface:

& Buildings (see Fig. 14a): When a building object is placed on the tabletop surface, the map
automatically bounds to the object at its location on the map. We chose two representative
buildings from our city (Zaragoza): the cathedral and the castle.

& Lens (see Fig. 14b): an object symbolizing a lens can be manipulated on the tabletop
surface to visualize augmented data on the map. Two sub-tokens can be assigned to the
lens object in order to get a photographic view of the map or to overlap graphic
information about public transport on the lens area.

& Navigator (see Fig. 14c): this object can be dragged on the tabletop surface in order to
navigate on the map. The navigator also has a moveable sub-token which can be used to
adjust the zoom visualization factor.

& Compass (see Fig. 14d): this object was not in the original MetaDesk application, but it is
added to our sample in order to exemplify the possibilities of including active manipula-
tions with ToyVision. The compass is a reactive playing piece with helps users to orient
themselves since it always points to the north of the map.

5.1 Physical prototyping

Prototyping a tangible tabletop application with ToyVision begins by handcrafting or adapting
conventional objects to be used on a visual based tabletop device. This means that a printed

Fig. 12 XML structure of a message created by the Widget Manager

Fig. 13 The process of creating a tangible tabletop application with ToyVision

Multimed Tools Appl

marker (fiducial) has to be attached to the base of the playing piece in order to be identified and
tracked by ToyVision. A collection of 18 different fiducials is provided with ToyVision.

MetaDesk playing pieces were handcrafted with cardboard, Lego™ pieces, and some
pieces from other toys:

& Buildings (see Fig. 15): These pieces were built as cardboard cards, with a draw of the
building on one side, and the fiducial on the other.

& Lens (see Fig. 16a): This piece was also built with cardboard. The lens required an area on
its base to attach the fiducial. In order to change the different statuses of the lens piece, two
holes were created on both sides of the piece, so that, small subpieces can be inserted/
removed (red tokens in Fig. 16a). This way, user may activate/deactivate different visual-
ization layers inside the lens. Subpieces to be manipulated inside the constraint holes need
to have attached a printed white circle to their bases in order to be identified by ToyVision.

& Navigator (see Fig. 16b): This piece was built in Lego™ pieces. It requires an area to
attach a fiducial, and a long transversal hole in which a subpiece (yellow token in Fig. 16b)
can be translated vertically in order to adjust the map zoom value. Similar to the lens piece,
this subpiece also requires a white circular marker in order to track its position.

& Compass (see Fig. 17): It was built with pieces from other toys and cardboard. Since this is
a reactive playing piece, it requires to embed an electronic actuator (a servo motor), inside
the playing piece. This actuator provides with autonomous orientation to the compass
arrow. The computer system will be in charge of calculating the arrow orientation

Fig. 15 Building pieces (left), and fiducials attached to base (right)

Fig. 14 MetaDesk: Geographic tangible application with building piece (a), lens (b), navigator (c) and compass (d)

Multimed Tools Appl

depending on the map configuration, and send a command to ToyVision in order to
reorient the compass.

5.2 TUIML

In order to model the application in ToyVision, first it must be visually represented in TUIML.
Figure 18 shows the TUIML visual representation for the MetaDesk application.

Since all the playing pieces involved in MetaDesk have a very specific role in the
application, all have been modelled as Named Tokens. Lens and navigator areas in which
subpieces can be passively manipulated have been modelled as passive constraints. The
different statuses of each constrain have been modelled has TACs. Those statuses that can
be expressed by a name (on/off statuses of lens playing piece) have been modelled as
manipulation TAC. Those statuses that need to be expressed as a numerical variable (zoom
coefficient at the navigator playing piece) have been modelled as representation TACs. Active
manipulations in the compass playing piece have been modelled as an active constraint
describing the reactive piece, and a representation TAC with a numerical variable containing
the orientation (0°–360°).

5.3 Graphic assistant

The TUIML visual definition has to be transferred to ToyVision using the Graphic Assistant.
ToyVision’s graphic interface is divided into two main areas (see Fig. 19). The left area

shows real-time image feedback from the tabletop camera sensor; the right area represents a
canvas where the designer can draw the TUIML visual representation of the playing pieces. A
toolbox is placed at the bottom of the canvas which is used to drag tokens, constraints and
TACs to the canvas area.

Fig. 16 MetaDesk controllers: a: Lens piece (left), and fiducials attached to base (right); b: Navigator (left), and
fiducials attached to base (right)

Fig. 17 Compass piece (left) and servo motor actuator embedded (right)

Multimed Tools Appl

For the MetaDesk application, Fig. 20 shows the graphic interface after adding a named
token that represents the cathedral building playing piece. In the visual feedback area, the
designer has drawn an area to define the base of the playing piece in which the fiducial has
been attached. Finally, the designer chooses the specific fiducial from the ToyVision’s
collection.

Once the Named Token has been created, the designer has the possibility of associating
constraints to it. Figure 21 shows the fader constraint added to the navigator token to represent
the fader constraint area. In order to model the fader constraint, the designers has drawn an area
in the visual feedback area to delimit the hole in the base of the playing piece in which the
subpiece is constrained to move.

Finally, the designer associates at least one TAC relationship to each constraint. TACs
represent the different statuses that each constraint can have when the players or the system
manipulates them. Figure 22 shows the “zoom” manipulation TAC added to the fader
constraint. The designer has defined the kind of passive manipulation that has a meaning in
the MetaDesk application. In the navigator playing piece, this manipulation consists on
vertically displace the fader subpiece. This way, the zoom TAC will inform of the vertical
position of the fader relative to the constraint area. ToyVision enables the designer to instantly
test passive manipulations, updating and showing TAC values at the same time the playing
piece is being manipulated.

Active manipulations are also modelled with constraints and TACs. An active constraint
represents a reactive part of the playing piece. Figure 23 shows the ToyVision graphic assistant
after adding the compass token. The “arrow” active constraint represents the servo-motor
actuator embedded into the playing piece. ToyVision provides with graphic guidance to
connect the actuator to the Arduino platform. The “zoom” manipulation TAC represents the
status of the electronic actuator. In the compass case, this is an active status, i.e., it is the

Fig. 18 Visual TUIML of the MetaDesk application

Fig. 19 ToyVision GUI. a: visual feedback from the tabletop camera sensor. b: TUIML canvas. c: Toolbar

Multimed Tools Appl

system, nor the user, which sets this status. By setting a numeric value to the TAC, and
pressing the “test” button, the designer can test the active manipulations of the compass.

ToyVision is ready to identify all playing pieces manipulations that have a meaning in the
tabletop application, once the TUIML model has been translated to the Graphic Assistant.
ToyVision sends an XML message through a TCP/IP socket informing of each identified
manipulation when this occurs. Thus, the host application just has to listen to this socket, and
parse the messages to get knowledge of the playing pieces places on the tabletop surface. This
is detailed in the next subsection exemplified with the coding of the MetaDesk host
application.

5.4 Coding

In general, coding a game application mainly consists of providing the visual and audio
feedback in response to the player’s actions to some predefined game logic. In the case of
developing a tabletop game with ToyVision, the player’s actions are manipulations of playing
pieces on the tabletop surface. ToyVision identifies those manipulations that have a meaning in
the game and composes a XML-compliant message which contains complete information
about the new status of the playing piece that has been manipulated. This message is sent to the
host application through a TCP/IP socket. So, in order to implement a tabletop application,
developers just need to implement a TCP/IP socket client that listens for text messages from
ToyVision. Communication with ToyVision is bidirectional, which means that the host
application can also send messages through the socket to ToyVision, related with active
manipulations targeting reactive playing pieces.

Fig. 20 ToyVision GUI. Adding a named token

Fig. 21 ToyVision GUI. Adding a constraint to the navigator playing piece

Multimed Tools Appl

Any development environment can be used to implement the host application, since it is
only required support for implement a standard TCP/IP socket. To exemplifying the coding of
a host application, following the code for the MetaDesk tabletop application is sketched. Code
samples presented do not belong to any specific programing language; they aim to facilitate the
understanding of the code needed.

In order to manage the visualization of the map to be projected on the tabletop surface, a
Map class is created. The Map class implements the following methods:

& ShowMap(), draws the current view of the map on the tabletop surface
& ShowLensSatellite(boolean), sets the visibility of the photographic view on the lens area
& ShowLensTransportLines(), sets the visibility of the public transport lines view on the lens

area
& MoveMap(mapCoordinate: 2DVector, tabletopCoordinate: 2DVector, angle: Number),

repositions the map in a way that the “mapCoordinate” will be positioned in the
“tabletopCoordinate”. Also, the map reorients to “angle”

& MoveLens(tabletopCoordinate: 2DVector, angle: Number), sets the position and orienta-
tion of the lens graphic area in the tabletop surface

& SetPivot(tabletopCoordinate: 2DVector), set the centre of rotation of the map
& Navigate(tabletopCoordinate: 2DVector, angle: Number), moves and reorients the map

relative to its pivot point
& Zoom(amount: Number), scales de map relative to amount.

Map class also implements the map coordinates of the Cathedral and Castle buildings as
numeric constants: CathedralCoordinate and CastleCoordinate.

Fig. 22 ToyVision GUI. Adding a manipulation TAC to the navigator playing piece

Fig. 23 ToyVision GUI. Adding the compass active playing piece

Multimed Tools Appl

The logic of the MetaDesk application lies in two functions: Setup, and Callback. Setup
function is summoned when the application launches. It is in charge of the initialization of the
MetaDesk classes and variables: it instantiates the Map class, creates the TCP/IP socket and
connects to the ToyVision port. It also associates this socket with the Callback function, so this
is automatically summoned each time a new message arrives from ToyVision through the
socket. The Callback function receives as a parameter the XML messaged retrieved from the
socket. In general, for any new message that arrives from the ToyVision framework, the
Callback function should:

1. Find out the name of the token that has been manipulated by the user.
2. Find out the kind of passive manipulation: user has added/moved/removed object, or a

subpiece has been manipulated in a constraint.
3. If a constraint has changed its status, get the new active manipulation TAC, or get the

value of the representation TAC.

Figure 24 sketches the Callback function for the MetaDesk application. For the
building playing pieces, only its relative position on the tabletop surface is used to
visualize its position on the map. For the lens playing piece, its TACs status
determines the different visualization layers of the lens graphic area. The navigator
playing piece sets the map pivot point position where it is placed. This pivot point is
attached to the navigator object when it is dragged on the tabletop. When the fader
subpiece is manipulated, the zoom value is extracted from its “Zoom” TAC. Finally,
the compass arrow has to be reoriented when the map rotates. This can happen when
the user moves the buildings and navigator playing pieces; thus, an XML command is
send from the Callback function to ToyVision through the TCP socket, with the new
orientation angle.

It is interesting to point out the differences between coding passive manipulations of
playing pieces using ToyVision or using other popular tabletop frameworks with an architec-
ture based on an Event Interpretation Layer, for example Reactivision [36] or CCV [6], both
based on the TUIO communication protocol [22]. Coding a host application based on the
TUIO protocol requires six callback functions to be implemented, three to deal with object
messages (playing pieces) and three to deal with finger messages:

& addTuioObject: this callback function is summoned when a new playing piece has been
added to the tabletop surface

& updateTuioObject: this callback function is summoned when an already placed playing
pieces has been moved or rotated on the tabletop surface

& removeTuioObject: this callback function is summoned when a playing piece is removed
from the tabletop surface

& addTuioCursor: this callback function is summoned when a new finger is placed on the
tabletop surface

& updateTuioCursor: this callback function is summoned when an already placed finger has
moved on the tabletop surface

& removeTuioCursor: this callback function is summoned when a finger is removed from the
tabletop surface

In the MetaDesk example, the implementation of the Map class methods and the manage-
ment of the events related to placing, moving and removing playing pieces from the tabletop
surface is very similar to use the ToyVision framework, with the exception of using different

Multimed Tools Appl

Fig. 24 Sketched code for the Callback function dealing with the radio playing piece manipulations

Multimed Tools Appl

callback functions to deal with adding, moving or removing events. Also, the playing pieces in
ToyVision are not identified by their names but by their printed fiducial identification numbers.

The main differences emerge when dealing with other passive manipulations on the playing
pieces (changing the status of the playing piece). For example, changing the status of the lens
and navigator objects implies to find relations between different TuioObject and TuioCursor
events; i.e., each time a cursor event arrives, it is necessary to geometrically determine if this
event is just a tactile event or if it is related with the manipulation of a subpiece on a playing
piece. Figure 25 shows the TUIO six callback functions with sketched code to just deal with
the navigator playing piece. As it can be seen, finding out the zoom status involves complex
geometric calculations to determine the position and orientation of the subpiece in relation with
constraint area of the navigator object.

Another important difference between the ToyVision framework and other event based
frameworks is the impact that any change in the design of the playing piece might have on the
code. In the case of ToyVision, changing the arrangement of any constraint area in the playing
piece, for example, has no impact on the code. On the other hand, in an event based
framework, all the geometrical calculations would have to be remade.

Fig. 25 Sketched code for the TUIO callback functions dealing with the navigator playing piece

Multimed Tools Appl

Implementing active manipulations using other frameworks based on an Event Interpreta-
tion Layer and the TUIO protocol means that the TUIO protocol is unidirectional and the
framework gives no support to communicate with electronic sensors and actuators embedded
in the playing piece. Therefore, it is necessary to implement hardware level functions in the
host application to deal with them.

To conclude, dealing with high abstract messages coded in XML helps to lower the
threshold of developing tabletop game applications based on tangible interaction. This impact
on the threshold has been quantitatively evaluated, as described in the next section.

6 Evaluation

This section presents two evaluations of the ToyVision framework. The first focuses on
assessing the development threshold and the second on assessing the tangible expressiveness
of our framework.

There are no standard methods for evaluating frameworks and user interfaces targeting the
development of TUI. However, previous experience in the field of software engineering can be
useful in finding valuable metrics [7] applicable to the evaluation of ToyVision.

Currently, usability measures are the most widely accepted method of assessing the
appropriateness of a software tool for a particular context. The ISO 9126–1 [20] standard
suggests that measures of usability should cover:

& Effectiveness. The ability of users to complete tasks using the tool. In the context of
software frameworks, effectiveness can be measured by the completion rate of fully
functional applications coded by users using the framework.

& Efficiency. The level of resources consumed in performing the tasks. In the context of
software frameworks, measurable resources are the amount of code lines generated to
complete the tasks and the time allocated.

& User Satisfaction. Users’ subjective perceptions of the tool. Satisfaction is usually mea-
sured through the use of questionnaires and attitude scales.

As stated in the introduction to this paper, a low development threshold was one of the main
objectives in creating ToyVision. The threshold is related with the difficulty of learning and
using the system, and its usability in general. High completion rates (effectiveness), rapid
development of shorter algorithms (efficiency), and users’ perceived difficulty (user satisfac-
tion) can be used as indicators of a low development threshold when developing applications
using ToyVision. These indicators can be quantitatively measured.

There are no clear quantitative evaluation methods for assessing the raising of the ceiling of
expressiveness of what can be implemented using the tool, the other main ToyVision design
objective. However, one way of carrying out such an evaluation is to involve final users
(designers and developers of TUI) in the use of ToyVision. Although we had already a
successfully and initial assessment of TUIML (in which ToyVision is based) expressiveness
(see section 3.2.2) we wanted to test whether our tool was able to translate users’ concepts into
functional prototypes. This would reveal whether the objective of a higher ceiling of tangible
expressiveness has been achieved.

The next two sub-sections describe two different evaluations carried out with ToyVision.
The first focused on quantitatively evaluating the threshold of ToyVision. The second focused
on qualitatively evaluating the ceiling of expressiveness of our tool but some results related
with the development threshold were also obtained.

Multimed Tools Appl

6.1 “In Lab” evaluation

A group of students studying for the Master’s Degree in Computer Sciences at the University
of Zaragoza (Spain) participated in the evaluation of ToyVision. The hypothesis was that
ToyVision lowers the threshold of developing tangible tabletop applications compared with
other current tabletop frameworks. Therefore, the evaluation was planned as a comparison
between ToyVision and another tabletop framework with tangible support. The Reactivision
framework was chosen for this comparison since it is one of the most popular toolkits for
developing tabletop applications with tangible interaction.

The tabletop application to be developed was the MetaDesk concept previously described.
The compass playing piece was not included, since it requires active manipulations, and nor
Reactivision, neither other tabletop framework except ToyVision is currently giving support to
those kind of manipulations on conventional objects.

Four students participated in the evaluation, none of whom had any previous experience of
ToyVision or Reactivision or any other tool for developing tabletop applications. They were
free to come to our lab to work with ToyVision during several days. Some students needed
2 days to finish their tasks, while others needed 5 or 6 days.

The evaluation was organized in three stages: pre-test, test and post-test, as explained
below.

6.1.1 Pre-test

In order to obtain a technical profile of the participants, each of them completed a survey
requesting information about their age, academic degree and skills in three technical areas:

& knowledge of programming languages
& areas of expertise in development (web, management, multimedia, tangible…)
& areas of expertise in electronics (analog, digital, Arduino…).

The participants were between 22 and 25 years old. Two of them were industrial engineers
and the other two computer engineers. They all had very similar technical experience:

& All participants had some knowledge of general purpose programing languages such as
C++ and Pascal, and two of them of web languages such as JavaScript and PHP.

& Two participants had experience in developing scientific applications and the other two in
web development. None of them had prior experience in tabletop or TUI development.

& All participants had only theoretical knowledge about electronics, acquired during their
academic studies.

6.1.2 Test

The lab was arranged to accommodate two tabletop devices connected to two computer
systems with ToyVision and Reactivision frameworks installed (see Fig. 26). Printed docu-
mentation about both frameworks was provided to the participants.

The participants had to complete two tasks:

& Task 1: to develop a tabletop application using the ToyVision framework
& Task 2: to develop the same tabletop application but using the Reactivision framework

Multimed Tools Appl

The objects were provided to the participants, so that they only had to code the tabletop host
application. Moreover, they did not have to develop algorithms to visualize the map on the
tabletop. A pre-made library with high abstract map visualization and navigation functions and
documentation was provided to the participants. Therefore, they only had to generate the code
to deal with object manipulations on the tabletop.

At the beginning of each task, a coordinator introduced the participants to the framework
used in the task. The coordinator then monitored the time taken for the task. Once the
participant had finished the task, the host application was stored in order to count the lines
of code generated afterwards.

6.1.3 Post-test

At the end of both tasks, the participants completed two surveys (one related to
ToyVision and the other to Reactivision) to evaluate the user preferences. The survey
comprised a System Usability Scale (SUS) [5] and an Intrinsic Motivation Inventory
(IMI) questionnaire [8].

The SUS questionnaire aimed to give a global view of the subjective assessment of
ToyVision and Reactivision usability. The SUS is composed of 10 items rated on a seven
point Likert Scale rating from 1 (strongly disagree) to 7 (strongly agree), in response to
statements such as “I thought ToyVision/Reactivision was easy to use”.

The IMI questionnaire was intended to assess the participants’ subjective experience related
with the activity carried out in the lab. IMI questionnaires are composed of a varied number of
items, rated on a seven point Likert Scale rating from 1 (strongly disagree) to 7 (strongly
agree). Each item measures one of six sub-scales: interest/enjoyment, perceived competence,
effort, value/usefulness, perceived pressure/tension and perceived choice. We selected a set of
20 items based on their relevance to our evaluation (see Table. 2).

6.1.4 Results

Quantitative measurements comparing ToyVision and Reactivision usability are now
presented:

Effectiveness: All participants were able to develop the MetaDesk application completely
for both tasks. Therefore, it can be concluded that both ToyVision and Reactivision are
effective tools for developing tabletop applications based on tangible interaction.

Fig. 26 Lab evaluation participant working with a tabletop

Multimed Tools Appl

Efficiency: Table 3 shows the resources (lines of code and time to complete the applica-
tion) used in each task by each participant. On average, the lines of code generated when
using ToyVision were 62% fewer than those generated for Reactivision. The time required
to implement the host application with ToyVision was 32 % less than with Reactivision.
Satisfaction: User satisfaction was measured with the post-test questionnaires by calcu-
lating the SUS and IMI scores. SUS and IMI scores have a range of 0 to 100, 100 being
the perfect score.

Table 4 shows the results of the SUS survey. There was a significant difference in the
perceived usability of each framework. On average, ToyVision scored 24 points more than
Reactivision.

As regards Intrinsic Motivation (see Table 5), there was no notable difference between the
frameworks. It seems that both tasks were equally motivating for participants. The reason for
this is probably the fact that the IMI survey measures participants’ motivation when carrying
out tasks. Since both tasks were the same (developing the same tangible application), the IMI

Table 2 Questionnaire to assess subjective experience when developing with ToyVision/Reactivision

Item Sub-scale

1. While I was working with ToyVision/Reactivision, I was thinking about how
much I enjoyed it

2. I did not feel at all nervous about using ToyVision/Reactivision
3. This activity did not hold my attention at all
4. I think I am pretty good at using ToyVision/Reactivision
5. I found using ToyVision/Reactivision very interesting
6. I enjoyed using ToyVision/Reactivision very much
7. I felt very tense while using ToyVision/Reactivision
8. Using ToyVision/Reactivision was fun
9. I think I did pretty well in this activity, compared to using Reactivision/ToyVision
10. When using ToyVision/Reactivision, I felt in control
11. I could not do some of the things I wanted to do with ToyVision/Reactivision
12. When using ToyVision/Reactivision, I thought about other things
13. When using ToyVision/Reactivision, I was aware of distractions
14. When using ToyVision/Reactivision I was totally absorbed in what I was doing
15. Using ToyVision/Reactivision was intrinsically interesting
16. Interacting with ToyVision/Reactivision excited my curiosity
17. I was so involved in ToyVision/Reactivision that I lost track of time
18. I have a positive opinion of using ToyVision/Reactivision
19. Using ToyVision/Reactivision aroused my imagination
20. I am willing to participate in a similar activity in the future

Interest/enjoyment
Pressure/tension
Interest/enjoyment
Perceived competence
Interest/enjoyment
Interest/enjoyment
Pressure/tension
Interest/enjoyment
Perceived competence
Perceived competence
Perceived competence
Interest/enjoyment
Interest/enjoyment
Interest/enjoyment
Interest/enjoyment
Interest/enjoyment
Interest/enjoyment
Perceived competence
Interest/enjoyment
Interest/enjoyment

Table 3 Efficiency measures

Participant Code lines TIME (minutes)

ToyVision Reactivision ToyVision Reactivision

1 73 169 440 770

2 56 149 180 290

3 34 117 270 300

4 42 98 180 200

Average 51 133 267 390

Multimed Tools Appl

survey reflects a high motivation for developing a tangible application irrespective of the
framework used.

As stated before, the threshold is related with usability, i.e. with the difficulty of learning
and using the system: high effectiveness, efficiency (shorter algorithms developed in short
times), and users’ satisfaction can be used as indicators of a low development threshold. In that
way and after analysing the usability measures obtained in the in-lab evaluation, it can be
concluded that ToyVision has effectively lowered the threshold of developing tangible tabletop
applications. Since ToyVision is based on the Reactivision framework, we may conclude that
this impact on the threshold is caused by the addition of a Widget layer of abstraction (the
Graphic Assistant and the Widget Manager). This impact was notable in the resources needed
to track passive manipulations (the only ones supported in fact by Reactivision), with 64 %
less code with ToyVision than with Reactivision. Furthermore, this was also clearly perceived
by participants, who scored ToyVision 24 point easier to use than Reactivision.

6.2 Workshop session

Aworkshop session was organized during an international conference in the field of HCI. The
goal of this workshop was to give designers and developers of computer interfaces hands-on
experience of developing a functional prototype of a tangible tabletop game with the support
of the ToyVision framework. The workshop session covered a complete design process from
the concept creation to the development of a functional prototype. In this way, the ceiling of
expressiveness of ToyVision could be validated by checking whether ToyVision was giving
support to all the game concepts ideated by participants. But additionally, by using ToyVision
in a real scenario with designers and developers with different technical profiles, also the
threshold of prototyping hybrid games with ToyVision was evaluated.

Four participants took part in a full day workshop. One of them was a developer and
electronic engineer specialized in TUI with a high technical profile. Two were students on a

Table 4 SUS questionnaire scores
Participant SUS score

ToyVision Reactivision

1 83 73

2 71 66

3 96 23

4 70 65

Average results 80 56

Table 5 IMI questionnaire scores
Participant IMI score

ToyVision Reactivision

1 86 83

2 81 83

3 89 77

5 68 68

Average results 81 77

Multimed Tools Appl

Master’s computer interaction program with generic technical skills in developing interactive
applications (not TUI). The last was a product designer with low technical skills. Three
coordinators managed the workshop. One coordinator offered technical support to the partic-
ipants while the other two took observation notes and video-recorded the session.

At the opening of the workshop session, the participants were introduced to a tabletop
device, highlighting its affordances for TUI. The workshop was organized in the following
stages: concept creation, building assets and coding the game.

6.2.1 Concept creation

All the participants, as a team, carried out a brain-storming activity around a new tangible
game for the tabletop device. They were provided with DIN-A3 papers, pens and several
conventional children’s toys to create paper-prototypes from their ideas, and to discuss and
iterate their design ideas while looking for a concept simple enough to be developed during the
duration of the workshop. Once the concept was finished, they also had to express it using
TUIML. ATUIML template was provided to the team with some brief instructions on how to
model tangible playing pieces. The participants had to draw on paper a TUIML representation
of each playing piece involved in their game concept.

The concept creation activity lasted for 2 h. The participants started by looking for
inspiration from the toys at their disposal (see Fig. 27-left). They examined the physical
affordances of the toys and tried to figure out a way to translate them into a game to be played
on a tabletop device. This activity lasted for nearly half an hour without an agreement being
reached on a complete game concept. Each participant tried to defend his/her idea inspired by
his/her favorite toy, but it was not possible to unify all the ideas into one simple and coherent
game. After realizing that the brain-storming session was getting stuck, the participant with
product design experience started leading the concept creation process. He began by suggest-
ing a game context attractive to children: popular current TV series or movies. After a short
discussion, the team agreed on the “Lord of the Rings” as a setting, which served as a base for
the plot-line of the game. Two players help the hobbits Frodo and Sam to pass through a
labyrinth while collecting wood. When enough wood is collected, the players build a bridge to
cross a river. On the other side of the river, three orcs are waiting. One of the orcs hides the
Ring, the others attack the hobbits. The players have to guess which orc hides the Ring. In
order to add speed to the game, a fish monster lives in the river and destroys the bridge at time
intervals, forcing the players to rebuild it.

The team built a simple “paper” prototype using toys and drawing the board on a sheet of
paper. They were able to check the feasibility of their concept by simulating how the game
would be played (see Fig. 27-right).

Fig. 27 Concept creation activity. Left: Work area, with numerous toys provided. Right: Paper prototype of the
tangible game concept

Multimed Tools Appl

During the process of visually modeling each playing piece into TUIML, many questions arose
from the participants. They had difficulties in classifying the playing pieces (i.e., taking decisions
about which playing piece was a Named, Simple, or Deformable Token, or when a TAC was
representative or manipulative). The general definitions of TUIML terms were not sufficient for
them to understand, and the organizers had to give some practical samples before they were able to
use TUIML by themselves. Finally, the participants were able to express all the tangible manipu-
lations involved in the game concept in the TUIML visual representation shown in Fig. 28.

6.2.2 Building assets

The participants had to create all the materials needed to implement the game, both physical (playing
pieces) and virtual (virtual game-board graphics to be projected on the tabletop surface). The
participants had also to transfer each playing piece TUIML into ToyVision using the graphic assistant.

This activity lasted 3 h. From the beginning, the team was divided into two groups. One
group was in charge of building or adapting conventional toys into tangible tokens to be used
in the game, and the other group was in charge of drawing the game graphics. The first group
had plenty of conventional toys and also LEGO™ construction block sets, foam core and
cardboard, as well as a wide range of sensors and actuators for embedding into toys to provide
them with active manipulations where necessary. The game pieces (Frodo and Sam) and the
Orcs were created recycling other toys. Pieces of clay were modeled to build the bridge. The
river fish required active manipulations (autonomous movements). This was built from LEGO
pieces with an embedded servo motor actuator to control its speed (see Fig. 29-left). The
construction of the fish took up most of the time available for this stage. The prototyping of
this piece was led by the participant with experience in TUI. Nevertheless, it was difficult for
him to embed a servo motor in the toy and to achieve optimal speed of movement required for
the game. The other group was responsible for creating the graphic assets to be projected on
the tabletop surface. They used vector graphic design software on their own portable com-
puters (see Fig. 29-right). No problems were encountered during this process.

The process of translating the TUIML of each playing piece into ToyVision using the graphic
assistant gave rise to many questions from the participants, especially during the creation of the
TAC statuses for the fish monster since it required active manipulations. Defining and testing the
TACs for the fish monster required many trials and errors until they were successfully adjusted to
provide the playing piece with the desired speed in its movements.

6.2.3 Coding the game

Coding the game lasted 1 h and a half. The participants had to implement the game code. To
code the host application, the Action Script 3 (AS3) language was chosen as it has a very simple

Fig. 28 Lord of the Rings: TUIML visual representation

Multimed Tools Appl

syntax to parse XML and to create graphic applications. Brief manuals on how to parse XML in
AS3 and some AS3 code samples for dealing with graphics were provided to the participants.

The participant with development experience led the coding task. He had no experience in
AS3, but after an initial introduction to the AS3 syntax he quickly started to implement the game
logic. The other participants assisted in the testing of the application in the tabletop (see Fig. 30).

6.2.4 Results

As stated before, the focus of the evaluation was to assess the expressiveness of ToyVision.
The result was positive as ToyVision was proved to be sufficiently expressive to support the

prototyping of the hybrid game concept ideated by the participants. All the playing pieces were
completely modelled using TUIML, and they were translated to ToyVision through its graphic
assistant. The concept of the “Lord of the Rings” game involved both passive and active
manipulations in playing pieces. In particular:

& The three Orcs, Sam, and Frodo playing pieces (named tokens) do not require Constraints
and TACs. Only their position on the board has a meaning on the game; thus, other current
tabletop frameworks such as Reactivision, would have enough expressiveness to support
these playing pieces.

& The wood pieces simulated with clay were supported by ToyVision as Deformable Tokens
making it possible to identify the clay pieces placed on the board and their shapes and,
therefore, to detect the building of a bridge. Current tabletop frameworks do not have
expressiveness to support deformable objects. They are only able to support tagged objects,
so they do not provide any info about object’s shape. The “wood” concept would not have
been possible to prototype with other current tabletop framework except ToyVision.

Fig. 29 Left: Prototyping an active playing piece. Right: Creating graphic assets

Fig. 30 Testing the game on the tabletop device

Multimed Tools Appl

& The fish monster is a reactive playing piece with autonomous movements. Since
ToyVision supports communication with the Arduino platform, the game was able to send
commands to the fish monster player piece to make it move forward and backwards. No
current framework is able to give support to that kind of manipulations.

Besides expressiveness, other issues were analyzed in the workshop session. At the end of
the session, each participant filled in a satisfaction survey with their subjective perception of
the difficulty of using ToyVision. The survey was composed of seven Likert questions (1 very
easy – 5 very difficult) covering every stage of the prototyping process. The participants could
also write their personal comments on each question. The survey results are summarized in
Table 6. Two participants marked ToyVision as easy or very easy to use, and the other two as
normal. The latter two also pointed out that some programming knowledge was required to use
ToyVision, though one of them appreciated that the coding was focused on a small number of
functions. All the participants highlighted the help that the ToyVision documentation provided
during the session, though one participant would have appreciated more code examples. The
ToyVision graphic assistant was the element perceived as the easiest in the survey, though the
participants also pointed out some missing functionalities such as editing and deleting
individual constraints or undoing actions. Those participants unfamiliar with TUI perceived
the intrinsic difficulties of prototyping a TUI, though they also appreciated how ToyVision
supports the rapid and easy prototyping of TUI concepts.

These results confirm the lowering of the prototyping threshold. ToyVision has enabled a
multidisciplinary team to prototype a full functional tabletop game with tangible interaction in
a short time and has been perceived by both designers and developers as easy to use. Although
programing is still a barrier to designers without any programming skill, when experienced
developers are involved in the prototyping process, the coding task can be carried out in short
times, enabling designers to test the game in the tabletop device at an early stage and thus
enabling faster design iterations. In a similar way, although ToyVision offers support for active
manipulations in playing pieces, embedding electronic components in toys is still a task that
requires some electronic skills and previous experience. Decisions such as which kind of
actuator is suitable, how to embed it in the toy and how to model active manipulations are still
too complicated for participants without experience with these kinds of devices. These issues
would have to be carefully considered and improved.

Similarly, the observation notes taken during this evaluation session helped us to identify
several usability problems, especially those related with missing functionalities in the Graphic
Assistant. We are addressing these issues for the next version of ToyVision, as well as

Table 6 Perceived difficulty of creating a game with ToyVision

PERCEIVED DIFFICULTY OF… DIFFICULTY (1 VERY EASY – 5 VERY DIFFICULT)

P1 P2 P3 P4 average

Using ToyVision 3 3 2 1 2.25

Finding functionalities 3 3 3 1 2.5

Using the graphic assistant 1 3 2 1 1.75

Coding the game 3 2 3 1 2.25

Consulting help documents 2 1 2 3 2

Developing TUI 3 4 3 2 3

Learning curve 3 2 3 1 2.25

Multimed Tools Appl

improving the documentation by including more tutorials and practical samples. This is part of
the future work outlined in the next section.

7 Conclusions and future work

In this paper we have presented ToyVision, a software framework that aims to raise the ceiling
of expressiveness of tangible interaction in tabletop games while keeping the development
threshold low. This goal was motivated by an analysis of current software frameworks
supporting tangible interaction in tabletop applications. This analysis revealed that current
frameworks are based on an Event Interpretation layered architecture which only provides for
very simple manipulations of objects on the tabletop surface (place, move and remove). This
situation is hindering designers from fully exploring the physical feasibilities of the manipu-
lation of objects.

ToyVision adds a new Widget layer of abstraction over a framework with an Event
Interpretation architecture (Reactivision), which is responsible for processing low abstract
tabletop events into high abstract ones describing the status of playing pieces in the context of
the host game. In order to describe the status of playing pieces, the ToyVision Widget layer
implements a TUIML: a modelling language designed to express any tangible application in a
way that can be understood by a computer system. The adoption of the TUIML has enabled
ToyVision to support new passive and active manipulations on conventional objects. In
particular, ToyVision, unlike current tabletop frameworks, provides support to passive manip-
ulations of compound objects (inserting/removing sub-objects into/from another one), and the
passive manipulation of moveable pieces (moving/rotating part of an object) as well as a wide
range of active manipulations achieved by managing electronic actuators embedded into
conventional objects.

The process of designing a tabletop application with ToyVision is supported by a Graphic
Assistant which enables all the active and passive manipulations involved in the host appli-
cation to be visually modeled in TUIML. On the other hand, the implementation process is
supported by a client-server architecture, which enables ToyVision to be used with any
development environment, and a communication protocol based on XML messages, which
simplifies the task of parsing messages coming from the framework.

Evaluation sessions with HCI students, designers and developers of interactive applications
have shown that ToyVision is effectively lowering the threshold of developing tabletop
applications. Coding with ToyVision has proved to be more efficient and has been perceived
by users as easier than with current frameworks. Moreover, ToyVision is sufficiently expres-
sive to support new concepts of hybrid board games ideated by participants during the
workshops and is unique in supporting deformable objects and active manipulations.

The ToyVision framework has been designed and implemented with reusability and
extensibility in mind. For future work on ToyVision, new passive and active manipulations
are planned such as 3d tabletop interaction (manipulation of objects over the tabletop surface).
Also, we are considering ToyVision’s suitability for bigger areas of interaction such us rooms
and playgrounds. These environments may be attractive for creating new concepts of hybrid
videogames, but they will also present new design and development challenges.

Further evaluations and workshops with designers and developers of interactive applica-
tions and videogames are planned. Moreover, the evaluation of ToyVision with children is also
being considered, using development environments especially designed to teach children
computer programing concepts such us Scratch [37].

ToyVision is open-source software, and it is available at http://www.toyvision.org.

Multimed Tools Appl

Acknowledgments We thank Elisa Ubide for helping in the development of ToyVision. We also thank all the
students, designers and developers who participated in our evaluation sessions. This work has been partly
financed by the Spanish Government through the DGICYT contract TIN2011-24660.

References

1. Al Mahmud A, Mubin O, Shahid S, Martens JB (2008) Designing and Evaluating the Tabletop Game
Experience for Senior Citizens. Proceeding: NordiCHI, October, 20–22

2. Arduino: http://www.arduino.cc/
3. Bespoke: http://www.bespokesoftware.org/multi-touch
4. Bollhoefer KW, Meyer K, and Witzsche R (2009) Microsoft surface und das Natural User Interface (NUI).

Technical report, Pixelpark, Feb
5. Brooke J (1996) SUS-A quick and dirty usability scale. Usability evaluation in industry, 189, 194
6. CCV: Community Core Vision Web: http://nuicode.com/
7. Clements P, Kazman R, Klein M (2002) Evaluating software architectures: methods and case studies.

Addison-Wesley, Boston, p 323
8. de Souza Alcantara T, Ferreira J, & Maurer F (2013) Interactive prototyping of tabletop and surface

applications. In Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive computing
systems (pp. 229−238). ACM

9. Deci EL, Ryan RM (1985) Intrinsic motivation and self-determination in human behavior. Springer, New York
10. Echtler F, Klinker G (2008) A multitouch software architecture. In Proc of NordiCHI ’08. pp. 463–466
11. Graffiti framework. https://code.google.com/p/grafiti/
12. Greenberg S (2002) Enhancing creativity with groupware toolkits. Groupware: Design, Implementation, and

Use. Springer. 2003. pp. 1–9
13. Greenberg S and Fitchett C (2001) Phidgets: easy development of physical interfaces through physical

widgets. In UIST ’01, pages 209–218
14. Hansen TE, Hourcade JP, Virbel M, Patali S and Serra T (2009) PyMT: a post-WIMP multi-touch user

interface toolkit. International Conference on Interactive Tabletops and Surfaces (ITS ’09). ACM, pp. 17–24
15. HeijboerM and van denHoven E (2008) Keeping up appearances: interpretation of tangible artifact design. Proc.

of the 5th Nordic conference on Human-computer interaction: building bridges (NordiCHI ’08) pp162–171
16. HengX, Lao S, LeeH,&SmeatonA (2008)A touch interactionmodel for tabletops and PDAs. In Proc. PPD ’08
17. Hinske S and Langheinrich M (2009) W41K: digitally augmenting traditional game environments. Proc. of

the 3rd international Conference on tangible and Embedded interaction (2009). TEI ’09, 99–106
18. Holmquist LE, Redström J, & Ljungstrand P (1999) Token-based access to digital information. In Handheld

and Ubiquitous Computing (pp. 234–245). Springer Berlin Heidelberg
19. Hornecker E, & Buur J (2006) Getting a grip on tangible interaction: a framework on physical space and

social interaction. In Proceedings of the SIGCHI conference on Human Factors in computing
systems (pp. 437–446). ACM

20. Ishii H. & Ullmer B (1997) Tangible bits: towards seamless interfaces between people, bits and atoms. In
Proceedings of the ACMSIGCHI Conference on Human factors in computing systems (pp. 234–241). ACM.

21. ISO 9126–1, Software engineering. 2001. ISO Press
22. Iwata T, Yamabe T, Poloj M, and Nakajima T (2010) Traditional games meet ICT: a case study on go game

augmentation. Proc. of the fourth international conference on tangible, embedded, and embodied interaction
(TEI ’10). Pp. 237–240

23. Kaltenbrunner M, Bovermann T, Bencina R, and Costanza E (2005) TUIO: A protocol for table-top tangible
user interfaces. In 6th Int’l Gesture Workshop

24. Klemmer SR, Li J, Lin J, & Landay JA (2004) Papier-Mache: toolkit support for tangible input. In
Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 399–406). ACM

25. Krzywinski A, Mi H, Chen W, Sugimoto M (2009) RoboTable: a tabletop framework for tangible interaction
with robots in a mixed reality. In: In proceedings of the international conference on advances in computer
enterntainment technology (ACE ’09). ACM, New York, pp 107–114

26. Leitner J, Haller M, Yun K, WooW, Sugimoto M, Inami, M, Cheok AD, and Been-Lirn HD (2010) Physical
interfaces for tabletop games. Comput. Entertain. 7, 4, Article 61, 21 pages

27. Li Y, Fontijn W, and Markopoulos P (2008) A tangible Tabletop Game Supporting Therapy of Children with
Cerebral Palsy. 2nd International Conference on Fun and Games, Springer-Verlag, pp. 182–193

28. Libavg web http://www.libavg.de/
29. LibTISCH: Library for tangible Interactive Surfaces for Collaboration between Humans. http://tisch.

sourceforge.net/

Multimed Tools Appl

30. Lin H.-H, and Chang T.-W (2007) A camera-based multi-touch interface builder for designers. In Human-
Computer Interaction. HCI Applications and Services

31. Marco J, Baldassarri S, & Cerezo E (2013) ToyVision: a toolkit to support the creation of innovative board-
games with tangible interaction. In Proceedings of the 7th International Conference on Tangible, Embedded
and Embodied Interaction (pp. 291–298). ACM

32. Marco J, Cerezo E, & Baldassarri S (2012) ToyVision: a toolkit for prototyping tabletop tangible
games. In Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing
systems (pp. 71–80). ACM

33. Marco J, Cerezo E, Baldassarri S (2012) Tangible Interaction and Tabletops: New Horizons for Children’s
Games International Journal of Arts and Technology (IJART). Vol. 5, Nos. 2/3/4. 2012. pp.151–176 ISSN:
1754–8853. Ed. Inderscience

34. Mikhak B, Lyon C, & Gorton T (2003) The Tower system: A toolkit for prototyping tangible user interfaces.
Submitted as a long paper to CHI 2003

35. Myers B, Hudson SE, Pausch R (2000) Past, present, and future of user interface software tools. ACM Trans
Comput Hum Interact 7(1):3–28

36. Openexhibits web: http://openexhibits.org
37. Reactivision: http://reactivision.sourceforge.net/
38. Resnick M, Maloney J, Monroy-Hernández A, Rusk N, Eastmond E, Brennan K, Kafai Y (2009) Scratch:

programming for all. Commun ACM 52(11):60–67
39. Rogers YandRoddenT (2004) Configuring spaces and surfaces to support collaborative interactions. InO’Hara,

K., Perry, M., Churchill, E. and Russell, D. (eds.) Public and Situated Displays. Kluwer Publishers. pp. 45–79
40. Shaer O and Jacob RJK (2009) A specification paradigm for the design and implementation of tangible user

interfaces. ACM Trans. Comput.-Hum. Interact. 16, 4, Article 20
41. Shen C, Vernier F, Forlines C, and Ringel M (2004) DiamondSpin: an extensible toolkit for around-the-table

interaction. In Proc. CHI ’04, pages 167–174
42. TouchLib: http://nuigroup.com/touchlib/
43. Trackmate: http://trackmate.sourceforge.net
44. Ullmer B, & Ishii H (1997) The metaDESK: models and prototypes for tangible user interfaces. In Proceedings

of the 10th annual ACM symposium on User interface software and technology (pp. 223–232). ACM
45. Wright M (2005) Open sound control: an enabling technology for musical networking. Organised Sound

10(03):193–200

Javier Marco obtained a Ph.D. in Computer Science Engineering in 2011 at the University of Zaragoza (Spain).
His thesis researched the benefits of tangible interfaces for children and their involvement during design and
evaluation stages.
He was a visiting researcher at the ChiCI Group at the University of Central Lancashire (UK) and at the M-ITI at
the University of Madeira (Portugal), under a Carnegie Mellon post-doc program.
He is in the scientific committee of the Interaccion International Conference and Tangible and Embedded
Interaction International Conference. He also has organized several workshops in different international sympo-
siums dealing the design and implementation of tangible applications.

Multimed Tools Appl

Eva Cerezo received a Ph.D. degree in Computer Science in 2002 from the University of Zaragoza. She is
currently an Associate Professor at the Computer Sciences and Systems Engineering Department at the
University of Zaragoza and a founding member of GIGA AffectiveLab. Her research areas are affective
multimodal human computer interaction, tangible interaction and virtual humans. She is author of more than
70 international publications that take in conjunction more than 300 citations. She is editor of the Advances in
Human-Computer Interaction Journal and regular reviewer of several national and international conferences like
the “ACM CHI Conference On Human Factors in Computing Systems” and the “International Conference on
Intelligent User Interfaces”.

Sandra Baldassarri received a B.Sc. in Computer Science from University of Buenos Aires, Argentina, in 1992
and a Ph.D. in Computer Science Engineering from the University of Zaragoza, Spain, in 2004. She is Assistant
Professor at the University of Zaragoza (Spain) and founder member of the AffectiveLab of the Advanced
Computer Graphics Group (GIGA) at the University of Zaragoza. Her research interests includes virtual humans,
affective computing, multimodal interfaces and tangible and natural interaction.

Multimed Tools Appl

	Lowering the threshold and raising the ceiling of tangible expressiveness in hybrid board-games
	Abstract
	Introduction and motivation
	Related work: tabletop frameworks for tangible interaction
	Modelling manipulations on tabletop games
	Describing a TUI with the TUIML
	Extending TUIML to model hybrid tabletop games
	ToyVision TUIML
	Validating TUIML expressiveness

	ToyVision’s architecture: the widget layer
	Prototyping with ToyVision
	Physical prototyping
	TUIML
	Graphic assistant
	Coding

	Evaluation
	“In Lab” evaluation
	Pre-test
	Test
	Post-test
	Results

	Workshop session
	Concept creation
	Building assets
	Coding the game
	Results

	Conclusions and future work
	References

