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Abstract This paper deals with two main research focuses

on Affective Computing: facial emotion recognition and

multimodal fusion of affective information coming from

different channels. The facial sensing system developed

implements an emotional classification mechanism that

combines, in a novel and robust manner, the five most com-

monly used classifiers in the field of affect sensing, obtaining

at the output an associated weight of the facial expression to

each of the six Ekman’s universal emotional categories plus

the neutral. The system is able to analyze any subject, male or

female, of any age, and ethnicity and has been validated by

means of statistical evaluation strategies, such as cross-vali-

dation, classification accuracy ratios and confusion matrices.

The categorical facial sensing system has been subsequently

expanded to a continuous 2D affective space which has made

it also possible to face the problem of multimodal human

affect recognition. A novel fusion methodology able to fuse

any number of affective modules, with very different time-

scales and output labels, is proposed. It relies on the 2D

Whissell affective space and is able to output a continuous

emotional path characterizing the user’s affective progress

over time. A Kalman filtering technique controls this path in

real-time to ensure temporal consistency and robustness to the

system. Moreover, the methodology is adaptive to eventual

temporal changes in the reliability of the different inputs’

quality. The potential of the multimodal fusion methodology

is demonstrated by fusing dynamic affective information

extracted from different channels (video, typed-in text and

emoticons) of an Instant Messaging tool.

Keywords Affective Computing �
Kansei (sense/emotion) engineering � Human factors �
Facial expression analysis � Multimodal fusion

1 Introduction

Human computer intelligent interaction is an emerging

field aimed at providing natural ways for humans to use

computers as aids. It is argued that for a computer to be

able to interact with humans it needs to have the commu-

nication skills of humans. One of these skills is the affec-

tive aspect of communication (Boukricha et al. 2007). For

this reason, affect sensing is becoming an indispensable

part of advanced human–computer interfaces. This paper

deals with two main research focuses on Affective Com-

puting: emotion recognition from the user’s facial expres-

sions and multimodal fusion of affective information

extracted from different human communicative channels.

A review of the state of the art in both issues follows.

1.1 Emotional facial recognition

The most expressive manner humans display emotions is

through facial expressions. Facial expression is the most

powerful, natural and direct way used by humans to com-

municate and understand each other’s affective state and

intentions (Keltner and Ekman 2000). Thus, the interpre-

tation of facial expressions is the most common method

used for emotional detection and forms an indispensable

part of affective Human Computer Interface (HCI) designs.
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The most long-standing way that facial affect has been

described by psychologists is in terms of discrete catego-

ries, an approach that is rooted in the language of daily life.

Facial expressions are often evaluated by classifying face

images into the six universal emotions proposed by Ekman

(1999) which include ‘‘happiness’’, ‘‘sadness’’, ‘‘fear’’,

‘‘anger’’, ‘‘disgust’’ and ‘‘surprise’’. Examples of studies

using this categorization are those of Hammal et al. (2005)

and Littlewort et al. (2006). The labeling scheme based on

category is very intuitive and thus matches peoples’

experience. This categorical approach, where emotions are

a mere list of labels, fails however to describe the wide

range of emotions that occur in daily communication set-

tings and intrinsically ignore the intensity of an emotion. In

this case, a small variation on face due to emotion may still

be regarded as ‘‘neutral’’ face. There are a few tentative

efforts to detect non-basic affective states from deliberately

displayed facial expressions, including ‘‘fatigue’’ (Ji et al.

2006), and mental states such as ‘‘agreeing’’, ‘‘concen-

trating’’, ‘‘interested’’, ‘‘thinking’’, ‘‘confused’’, and

‘‘frustrated’’ (Kapoor et al. 2007; Yeasin et al. 2006). In

any case, categorical approach presents a discrete list of

emotions with no real link between them. It does not rep-

resent a dimensional space and has no algebra: every

emotion must be studied and recognized independently.

To overcome the problems cited above, some

researchers, such as Whissell (1989) and Plutchik (1980),

prefer to view affective states not independent of one

another but rather related to one another in a systematic

manner. They consider emotions as a continuous 2D space

whose dimensions are evaluation and activation. The

evaluation dimension measures how a human feels, from

positive to negative. The activation dimension measures

whether humans are more or less likely to take some action

under the emotional state, from active to passive. Besides

categorical approach, dimensional approach is attractive

because it provides a way of describing a wide range of

emotional states and measuring the intensity of emotion. It

is much more able to deal with non-discrete emotions and

variations in emotional states over time, since in such cases

changing from one universal emotion label to another

would not make much sense in real life scenarios. How-

ever, in comparison with category-based description of

affect, very few works have chosen a dimensional

description level, and the few that do are more related to

the design of synthetic faces (Stoiber et al. 2009), data

processing (Du et al. 2007) or psychological studies

(Gosselin and Schyns 2001) than to emotion recognition.

Moreover, in existing affective recognition works the

problem is simplified to a two-class (positive vs. negative

and active vs. passive) (Fragopanagos and Taylor 2005) or

a four class (quadrants of 2D space) classification (Gari-

dakis et al. 2006), thereby losing the descriptive potential

of 2D space. Apart from seeking effective features that

reflect affective factors, the main difficulty comes from the

labeling of ground-truth data since there is no available

public facial expression database that provides emotional

annotations in terms of evaluation and activation

dimensions.

Independently of the description level chosen to classify

emotions (categorical or dimensional), a classification

mechanism must be established to categorize the facial

posture shown in terms of the defined description level. In

the literature, the facial expression analyzers that obtain the

best success rates for emotional classification make use of

neural networks, rule-based expert systems, Support Vector

Machines or Bayesian nets based classifiers. In (Zeng et al.

2009b), an excellent state-of-the art summary is given of

the various methods recently used in facial expression

emotional recognition. However, the majority of those

studies confine themselves to select only one type of

classifier for emotional detection, or at the most compare

different classifiers and then use that which provides the

best results (Littlewort et al. 2006).

In this paper, an effective system for sensing facial

emotions in a continuous 2D affective space is described.

Its inputs are a set of carefully selected facial distances and

angles that modelize the face in a simple way but without

losing relevant facial expression information. The system

starts with a classification method in discrete categories

that is subsequently expanded in order to be able to work in

a continuous emotional space and thus to consider inter-

mediate emotional states. As regards the classification

mechanism itself, the system intelligently combines the

outputs of different classifiers simultaneously. In this way,

the overall risk of making a poor selection with a given

classifier for a given facial input is considerably reduced.

The system is capable of analyzing any subject, male or

female of any age and ethnicity, and has been validated

considering human assessment.

1.2 Multimodal affect fusion

Natural human–human affective interaction is inherently

multimodal: people communicate emotions through mul-

tiple channels such as facial expressions, gestures, dia-

logues, etc. Although several studies prove that

multisensory fusion (e.g. audio, visual, physiological

responses…) improves the robustness and accuracy of

machine analysis of human emotion (Gilroy et al. 2009;

Zeng et al. 2009a, b; Kapoor et al. 2007) most emotional

recognition works still focus on increasing the success rates

in sensing emotions from a single channel rather than

merging complementary information across channels

(Gilroy et al. 2009). Multimodal fusion of different affec-

tive channels is still in its initial stage and far from being
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solved (Gunes et al. 2008). There are several problems that

make it an especially difficult task. One of these problems

is the definition of a reliable strategy to fuse the affective

information coming from different sources with very dif-

ferent time scales, metric levels and temporal structures.

Existing fusion strategies follow three main streams: fea-

ture-level fusion, decision-level fusion and hybrid fusion.

Feature-level fusion combines the data (features)

extracted from each channel in a joint vector before clas-

sification. Although several works have reported good

performances when fusing different modalities at a feature

level (Kapoor et al. 2007; Shan et al. 2007; Pun et al.

2006), this strategy becomes more challenging as the

number of input features increases and they are of very

different natures (different timing, metrics, etc.). Adding

new modalities implies a big effort to synchronize the

different inputs and retrain the whole classification system.

To overcome these difficulties, most researchers choose

decision-level fusion, in which the inputs coming from

each modality are modelled and classified independently,

and these unimodal recognition results are integrated at the

end of the process by the use of suitable criteria (expert

rules, simple operators such as majority vote, sum, product,

adaptation of weights, etc.).

Many studies have demonstrated the advantage of

decision-level fusion over feature-level fusion, due to the

uncorrelated errors from different classifiers (Kuncheva

2004) and the fact that time and feature dependence are

abstracted. Various, mainly bimodal, decision-level

fusion methods have been proposed in the literature

(Zeng et al. 2007; Gunes and Piccardi 2007; Pal et al.

2006), but optimal fusion designs are still undefined.

Most available multimodal recognizers have designed ad

hoc solutions for fusing information coming from a set of

given modalities but cannot accept new modalities with-

out re-defining and/or re-training the whole system.

Moreover, in general they are not adaptive to the input

quality and therefore do not consider eventual changes in

the reliability of the different information channels.

Decision-level methods allow the integration of different

algorithms without knowing their inner workings, which

can be common when one or more of them are based on

commercial software.

The hybrid methods try to combine the flexibility of the

decision-level methods, by maintaining different classifiers

for each modality, while using part of the information from

every sensor in each modality. For example in (Wöllmer

et al. 2009) a Multidimensional Dynamic Time Warping

algorithm is used to improve speech recognition by fusing

the audio channel with mouth gestures from a video

channel. The common drawbacks of these methods with

feature-level ones is the need to retrain the whole system

when adding a new channel.

The multimodal fusion problem reinforces the limita-

tions of categorical descriptions of affect. Discrete emo-

tional labels have no real link between them and, at the

fusion stage, every studied emotion must be recognized

independently. The dimensional approach is best suited to

deal with variations in emotional states over time. It pro-

vides an algebra and allows the emotional inputs coming

from different modalities to be related mathematically.

This is especially useful when integrating modules with

different time-scales. However, compared to category-

based description of affect, very few works have chosen a

dimensional description level. This is mainly due to the

current lack of (both unimodal and multimodal) databases

annotated in terms of evaluation activation dimensions.

Some interesting dimensional databases are publically

available (Douglas-Cowie et al. 2007; Grimm et al. 2008),

but, in comparison to categorical ones, they are limited in

terms of number of modalities (in general, they explore

audio and/or video channels exclusively), annotators, sub-

jects, samples, etc. Moreover, manual dimensional anno-

tation of ground truth is very time consuming and

unreliable, since a large labelling variation between dif-

ferent human raters is reported when working with the

dimensional approach (Fragopanagos and Taylor 2005).

For these reasons, although working at the dimensional

level would be more appropriate to face the problem of

multimodal fusion, for training and validation of the indi-

vidual modules to be fused using databases with categori-

cal annotations is more reliable. In this way the

introduction of noise into the training (due to scarce or poor

data) and consequently the building of systems that are not

very robust can be avoided.

This paper proposes an original and scalable method-

ology for fusing multiple affect recognition modules. In

order to let the modules be defined in a robust and reliable

way by means of existing categorical databases, each

module is assumed to classify in terms of its own list of

emotional labels. Whatever these labels are, the method is

able to map each module’s output to a continuous evalu-

ation–activation space, fuse the different sources of affec-

tive information over time through mathematical

formulation and obtain a 2D dynamic emotional path rep-

resenting the user’s affective progress as final output. To

show the potential of the proposed methodology, we

applied it to an Instant Messaging (IM) tool able to feed

three different affect recognition modules that sense emo-

tions by analyzing user’s facial expressions, typed-in text

and ‘‘emoticons’’, respectively. Thanks to the scalability of

the method, the IM tool would be easily improved by

adding new modules such as voice emotion recognition.

This article aims to be a first step towards bringing a new

perspective to the open issue of emotional multimodal

fusion and to open the door to further discussion.
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The structure of the paper is the following: Sect. 2

describes the categorical facial classification method. In

Sect. 3 the step from the discrete perspective to the con-

tinuous emotional space is explained in detail and Sect. 4

proposes the novel fusion methodology, which is put into

practice in the application presented in Sect. 5. Section 6

comprises the conclusions and future work.

2 A novel method for facial discrete emotional

classification

In this section, an effective method is presented for the

automatic classification of facial expressions into discrete

emotional categories. The method is able to classify the

user’s emotion in terms of the six Ekman’s universal

emotions (plus ‘‘neutral’’), giving a confidence value to

each emotional category. Section 2.1 explains the selection

and extraction process of the features serving as inputs to

the system. Section 2.2 describes the criteria taken into

account when selecting the various classifiers and how they

are combined. Finally, the obtained results are presented in

Sect. 2.3.

2.1 Selection and extraction of facial inputs

Facial Action Coding System (FACS) (Ekman et al. 2002)

was developed by Ekman and Friesen to code facial

expressions in which the individual muscular movements

in the face are described by Action Units (AUs). This work

inspired many researchers to analyze facial expressions by

means of image and video processing, where by tracking of

facial features and measuring a set of facial distances and

angles, they attempt to classify different facial expressions.

In particular, existing works demonstrate that high emo-

tional classification accuracy can be obtained by analyzing

a small set of facial distances and angles. Examples are the

work of Soyel and Demirel (2007) that studies six 3D facial

distances; the method proposed by Hammal et al. (2005)

that analyzes a set of five 2D facial distances; or the

approach of Chang et al. (2009), that measures 12 feature

distances.

Following that methodology, the initial inputs of our

classifiers were established in a set of distances and angles

obtained from 20 characteristic facial points (Hupont et al.

2008). In fact, the inputs are the variations of these angles

and distances with respect to the ‘‘neutral’’ face. The

chosen set of initial inputs compiles the distances and

angles that have been proved to provide the best classifi-

cation performance in existing works of the literature, such

as the aforementioned. The points are obtained thanks to

faceAPI, a commercial real-time facial feature tracking

program that provides cartesian facial 3D coordinates. It is

able to track up to ±90� of head rotation and is robust to

occlusions, lighting conditions, presence of beard, glasses,

etc. The initial set of parameters tested is shown in Fig. 1.

In order to make the distance values consistent (indepen-

dently of the scale of the image, the distance to the camera,

etc.) and independent of the expression, all the distances

are normalized with respect to the distance between the

eyes. The choice of angles provides a size invariant clas-

sification and saves the effort of normalization.

In order to determine the goodness and usefulness of the

parameters, a study of the correlation between them was

carried out using the data (distance and angle values)

obtained from a set of training images. For this purpose,

two different facial emotion databases were used: the

FGNET database (Wallhoff 2006) that provides spontane-

ous (non-acted) video sequences of 19 different young

Caucasian people, and the MMI facial expression database

(Pantic et al. 2005) that holds 1,280 acted videos of 43

different subjects from different races (Caucasian, Asian,

South American and Arabic) and ages ranging from 19 to

62. Both databases show Ekman’s six universal emotions

plus the ‘‘neutral’’ one and provide expert annotations

about the emotional apex frame of the video sequences. A

new database has been built for this work with a total of

1,500 static frames selected from the apex of the video

sequences from the FG-NET and MMI databases. It has

been used as a training set in the correlation study and in

the tuning of the classifiers.

A correlation-based feature selection technique (Hall

1998) was carried out in order to identify the most influ-

ential parameters in the variable to predict (emotion) as

well as to detect redundant and/or irrelevant features.

Subsets of parameters that are highly correlated with the

class while having low intercorrelation are preferred. In

that way, from the initial set of parameters only the most

significant ones were selected to work with: RD1, RD2,

Fig. 1 Facial parameters tested (in bold, the final selected

parameters)
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RD5, D3, D4, D6 and A1 (marked in bold in Fig. 1). This

reduces the number of irrelevant, redundant and noisy

inputs in the model and thus computational time, without

losing relevant facial information.

2.2 Classifiers selection and novel combination

In order to select the best classifiers, the Waikado Envi-

ronment for Knowledge Analysis (Weka) tool was used

(Witten and Frank 2005). It provides a collection of

machine learning algorithms for data mining tasks. From

this collection, five classifiers were selected after tuning

and benchmarking: RIPPER, Multilayer Perceptron, SVM,

Naive Bayes and C4.5. The selection was based on their

widespread use as well as on the individual performance of

their Weka implementation.

A tenfold cross-validation test over the 1,500 training

images has been performed for each selected classifier. The

success rates obtained for each classifier and each emotion

are shown in the first five rows of Table 1. As can be

observed, each classifier is very reliable for detecting cer-

tain specific emotions but not so much for others. For

example, the C4.5 is excellent at identifying ‘‘joy’’

(92.90% correct) but is only able to correctly detect ‘‘fear’’

on 59.30% of occasions, whereas Naive Bayes is way

above the other classifiers for ‘‘fear’’ (85.20%), but is

below the others in detecting ‘‘joy’’ (85.70%) or ‘‘surprise’’

(71.10%). Therefore, an intelligent combination of the five

classifiers in such a way that the strong and weak points of

each are taken into account appears as a good solution for

developing a method with a high success rate.

The classifier combination chosen follows a weighted

majority voting strategy. The voted weights are assigned

depending on the performance of each classifier for each

emotion. From each classifier, a confusion matrix formed

by elements Pjk(Ei), corresponding to the probability of

having emotion i knowing that classifier j has detected

emotion k, is obtained. The probability assigned to each

emotion P(Ei) is calculated as:

PðEiÞ ¼
P1k0 ðEiÞ þ P2k00 ðEiÞ þ � � � þ P5kvðEiÞ

5
ð1Þ

where, k0, k00…kv are the emotions detected by classifiers 1,

2,…5, respectively.

1. Firstly, the confidence value CV(Ei) is obtained by

normalizing each P(Ei) to a 0 through 1 scale:

CVðEiÞ ¼
PðEiÞ �min PðEiÞf g

max PðEiÞf g �min PðEiÞf g ð2Þ

where,

• min{P(Ei)} is the greatest P(Ei) that can be

obtained by combining the different Pjk(Ei) veri-

fying that k = i for every classifier j. In other

words, it is the highest probability that a given

emotion can reach without ever being selected by

any classifier.

• max{P(Ei)} is that obtained when combining the

Pjk(Ei) verifying that k = i for every classifier j. In

other words, it is the probability that obtains a

given emotion when selected by all the classifiers

unanimously.

2. Secondly, a rule is established over the obtained confi-

dence values in order to detect and eliminate emotional

incompatibilities. The rule is based on the work of Plutchik

(1980), who assigned ‘‘emotional orientation’’ values to a

series of affect words. For example, two similar terms (like

‘‘joyful’’ and ‘‘cheerful’’) have very close emotional

orientation values while two antonymous words (like

‘‘joyful’’ and ‘‘sad’’) have very distant values, in which

case Plutchik speaks of ‘‘emotional incompatibility’’. The

rule to apply is the following: if emotional incompatibility

is detected, i.e. two non-null incompatible emotions exist

simultaneously, that chosen will be the one with the closer

emotional orientation to the rest of the non-null detected

emotions. For example, if ‘‘joy’’, ‘‘sadness’’ and ‘‘disgust’’

coexist, ‘‘joy’’ is assigned zero since ‘‘disgust’’ and

‘‘sadness’’ are emotionally closer according to Plutchik.

2.3 Results

The results obtained when applying the strategy explained

in the previous section to combine the scores of the five

Table 1 Success rates obtained with a tenfold cross-validation test over the 1,500 training images for each individual classifier and emotion (first

five rows) and when combining the five classifiers (sixth row in bold)

Disgust (%) Joy (%) Anger (%) Fear (%) Sadness (%) Neutral (%) Surprise (%)

RIPPER 50.00 85.70 66.70 48.10 26.70 80.00 80.00

SVM 76.50 92.90 55.60 59.30 40.00 84.00 82.20

C4.5 58.80 92.90 66.70 59.30 30.00 70.00 73.30

Naive Bayes 76.50 85.70 63.00 85.20 33.00 86.00 71.10

Multilayer Perceptron 64.70 92.90 70.40 63.00 43.30 86.00 77.80

Combination of classifiers 94.12 97.62 81.48 85.19 66.67 94.00 95.56
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classifiers with a tenfold cross-validation test are shown in

sixth row of Table 1. As can be observed, the success rates

for the ‘‘neutral’’, ‘‘joy’’, ‘‘disgust’’, ‘‘surprise’’, ‘‘disgust’’

and ‘‘fear’’ emotions are very high (81.48–97.62%). The

lowest result of our classification is for ‘‘sadness’’, which is

confused with the ‘‘neutral’’ emotion on 20% of occasions,

due to the similarity of their facial expressions. Confusion

between this pair of emotions occurs frequently in the lit-

erature and for this reason many works do not consider

‘‘sadness’’. Nevertheless, the results can be considered

positive as emotions with distant ‘‘emotional orientation’’

values (such as ‘‘disgust’’ and ‘‘joy’’ or ‘‘neutral’’ and

‘‘surprise’’) are confused on less than 2.5% of occasions

and incompatible emotions (such as ‘‘sadness’’ and ‘‘joy’’

or ‘‘fear’’ and ‘‘anger’’) are never confused. Table 2 shows

the confusion matrix obtained after the combination of the

five classifiers.

3 From a discrete perspective to a 2D continuous

affective space

As discussed in the introduction, the use of a discrete set of

emotions (labels) for emotional classification has important

limitations. To avoid these limitations and enrich the

emotional output information from the system in terms of

intermediate emotions, use has been made of one of the

most influential evaluation–activation 2D models in the

field of psychology: that proposed by Whissell (1989).

The methodology, that will be explained in Sect. 3.1, starts

from the confidence values associated to each of Ekman’s

emotions obtained by the discrete emotional classification,

and calculates the (x,y) coordinates in the Whissell space

of the analyzed facial expression (see Fig. 2). The results

of the 2D emotional mapping are analyzed in detail taking

human assessment into account in Sects. 3.2 (with database

images) and 3.3 (with images obtained in uncontrolled

environments).

3.1 Emotional mapping to a continuous affective space

In her study, Whissell assigns a pair of values hevaluation,

activationi to each of the approximately 9,000 carefully

selected affective words that make up her ‘‘Dictionary of

Affect in Language’’ (Whissell 1989). Figure 3 shows the

position of some of these words in the evaluation–activa-

tion space. The idea is to build an emotional mapping so

that an expressional face image can be represented as a

point on this plane whose coordinates (x,y) characterize the

emotion property of that face.

It can be seen that the emotion-related words corre-

sponding to each one of Ekman’s six emotions have a

specific location (xi, yi) in the Whissell space (in bold in

Fig. 3). Thanks to this, the output information of the

classifiers (confidence value of the facial expression to

each emotional category) can be mapped in the space. This

emotional mapping is carried out considering each of

Ekman’s six basic emotions plus ‘‘neutral’’ as 2D weighted

points in the evaluation–activation space. The weights are

assigned depending on the confidence value CV(Ei)

obtained for each emotion. The final (x,y) coordinates of a

given image are calculated as the centre of mass of the

seven weighted points in the Whissell space following:

x ¼
P7

i¼1 xiCVðEiÞ
P7

i¼1 CVðEiÞ
and y ¼

P7
i¼1 yiCVðEiÞ
P7

i¼1 CVðEiÞ
ð3Þ

In this way the output of the system is enriched with a

larger number of intermediate emotional states.

3.2 Evaluation of results taking human assessment

into account

The method described in the previous section has been put

into practice with the outputs of the classification system

when applied to the database facial expressions images. In

Fig. 4 the general location of all classified images is plotted

(markers size is proportional to the percentage of images

Table 2 Confusion matrix obtained combining the five classifiers

Emotion is classified as

Disgust (%) Joy (%) Anger (%) Fear (%) Sadness (%) Neutral (%) Surprise (%)

Disgust 94.12 0.00 2.94 2.94 0.00 0.00 0.00

Joy 2.38 97.62 0.00 0.00 0.00 0.00 0.00

Anger 7.41 0.00 81.48 0.00 7.41 3.70 0.00

Fear 3.70 0.00 0.00 85.19 3.70 0.00 7.41

Sadness 6.67 0.00 6.67 0.00 66.67 20.00 0.00

Neutral 0.00 0.00 2.00 2.00 2.00 94.00 0.00

Surprise 0.00 0.00 0.00 2.22 0.00 2.22 95.56

Confusion matrix obtained combining the five classifiers (in bold, succes rates of each emotion coming from the sixth row in Table 1)
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situated at the same location). Figure 5 shows several

images with their nearest label in the Whissell space.

The database used in this work provides images labeled

with one of the six Ekman universal emotions plus ‘‘neu-

tral’’, but there is no a priori known information about their

location in the Whissell 2D space. In order to evaluate the

system results, there is a need to establish the region in the

Whissell space where each image can be considered to be

correctly located. For this purpose, a total of 43 persons

participated in one or more evaluation sessions (50 images

per session). In the sessions they were told to locate a set of

images of the database in the Whissell space (as shown in

Fig. 3, with some reference labels). As result, each one of

the frames was located in terms of evaluation–activation by

16 different persons.

The collected evaluation data have been used to define

an ellipsoidal region where each image is considered to be

correctly located. The algorithm used to compute the shape

of the region is based on Minimum Volume Ellipsoids

(MVE). MVE looks for the ellipsoid with the smallest

volume that covers a set of data points. Although there are

several ways to compute the shape of a set of data points

(e.g. using a convex hull, rectangle, etc.), the MVE was

chosen because of the fact that real-world data often

exhibits a mixture of Gaussian distributions, which have

equi-density contours in the shape of ellipsoids. First, the

collected data are filtered in order to remove outliers: a

Fig. 2 Overall block diagram for obtaining the location of a facial image in the 2D emotional space. A graphic illustration of the 2D emotional

mapping process is included as an example

Fig. 3 Simplified Whissell’s evaluation–activation space Fig. 4 Location of the different images of the database in the

Whissell space, according to the method explained in Sect. 3.1

(marker size is proportional to the percentage of images situated at the

same location)
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point is considered an outlier if its coordinate values (in

both dimensions) are greater than the mean plus three times

the standard deviation. Then, the MVE is calculated fol-

lowing the algorithm described by Kumar and Yildirim

(2005). The MVEs obtained are used for evaluating results

at four different levels:

1. Ellipse criteria. If the point detected by the system (2D

coordinates in the Whissell space) is inside the defined

ellipse, it is considered a success; otherwise it is a

failure.

2. Quadrant criteria. The output is considered to be

correctly located if it is in the same quadrant of the

Whissell space as the ellipse centre.

3. Evaluation axis criteria. The system output is a

success if situated in the same semi-axis (positive or

negative) of the evaluation axis as the ellipse centre.

This information is especially useful for extracting the

positive or negative polarity of the shown facial

expression.

4. Activation axis criteria. The same criteria projected to

the activation axis. This information is relevant for

measuring whether the user is more or less likely to

take an action under the emotional state.

The results obtained following the different evaluation

strategies are presented in Table 3.

As can be seen, the success rate is 73.73% in the most

restrictive case, i.e. when the output of the system is con-

sidered to be correctly located when inside the ellipse. It

rises to 94.12% when considering the evaluation axis cri-

teria. Objectively speaking, these results are very good,

especially when, according to Bassili (1979), a trained

observer can correctly classify facial emotions with an

average of 87%. However, they are difficult to compare

with other emotional classification studies that can be

found in literature, given that either such studies do not

recognize emotions in evaluation–activation terms, or they

have not been tested under common experimental condi-

tions (e.g. different databases or evaluation strategies are

used).

3.3 Evaluation of real video sequences

In order to demonstrate the potential of the proposed

classification method it has been tested with a set of

emotionally complex video sequences, recorded in a nat-

ural (unsupervised) setting. These videos are complex

owing to two main factors:

• An average user’s home setup was used. A VGA

resolution webcam placed above the screen is used,

with no special illumination, causing shadows to appear

in some cases. In addition, the user placement, not

covering the entire scene, reduces the actual resolution

of the facial image.

• Different emotions are displayed contiguously, instead

of the usual neutral?emotional-apex?neutral pattern

exhibited in the databases, so emotions such as surprise

and joy can be expressed without neutral periods

between them.

Fifteen videos from three different users were tested

(Fig. 6), ranging from 20 to 70 s from which a total of 127

Fig. 5 Examples of images from the database with their nearest label

in the Whissell space, according to the method described in Sect. 3.1

Table 3 Results obtained according to different evaluation criteria

Ellipse

criteria

(%)

Quadrant

criteria (%)

Evaluation

axis criteria

(%)

Activation

axis criteria

(%)

Success

rate

73.73 87.45 94.12 92.94
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key-frames were selected by the user who recorded the

video, looking for each of the emotional apex and neutral

points. These key-points were annotated in the Whissell

space thanks to 18 volunteers. The collected evaluation

data have been used to define a region where each image is

considered to be correctly located, as explained in previous

subsection. The results obtained following the different

evaluation strategies are presented in Table 4. As can be

seen, the success rate is 61.90% in the most restrictive case,

i.e. with ellipse criteria. It rises to 84.92% when consid-

ering the activation axis criteria.

4 Expansion to multimodality: a scalable methodology

for sensing emotions from multiple channels

In this section the use of the bidimensional Whissell

affective space is expanded to go beyond unimodal facial

affect sensing, in order to define a general methodology for

fusing the responses of multiple emotional recognition

modules. The modules to be fused can be of very different

natures, exploring different modalities, time scales, metric

levels, etc. The proposed methodology is able to fuse the

different sources of affective information over time and to

obtain as final output a global 2D dynamic emotional path

in the activation-evaluation space representing the user’s

affective progress. Moreover, it is scalable enough to add

new modules coming from new channels without having to

retrain the whole system.

Similar to the facial emotions recognition module pre-

sented in Sect. 2, every module i to be fused is assumed to

output a list—of one or more—discrete emotional labels

characterizing the affective stimulus recognized at a given

time t0i. The possible output labels can be different for each

module i. In this way, the modules’ performances are

maximized since, unimodal databases annotated in cate-

gorical terms are, to date, more complete and reliable than

dimensional and/or multimodal ones, allowing the indi-

vidual modules to be better trained and validated.

Figure 7 shows the general fusion scheme that will be

explained step by step in next sections. Since the proposed

methodology can combine any number of modules cover-

ing different modalities and its overall performance is

highly dependent on the accuracy of the individual mod-

ules to fuse, in this section the methodology is presented

Fig. 6 Examples of images from the video sequences taken in

uncontrolled environments

Table 4 Results obtained in an uncontrolled environment according

to different evaluation criteria

Ellipse

criteria

(%)

Quadrant

criteria (%)

Evaluation

axis criteria

(%)

Activation

axis criteria

(%)

Success

rate

61.90 74.60 79.37 84.92

Fig. 7 Continuous multimodal affective fusion methodology
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from a theoretical point of view exclusively. However, in

order to show its potential and usefulness, it will be applied

in Sect. 5 to a real IM interaction context by fusing the

information coming from different affective channels.

4.1 Emotional mapping to a continuous 2D affective

space

The first step of the proposed methodology expands the

idea of mapping the output of the facial classification

method to the evaluation–activation space to any categor-

ical module i. The idea is to build an emotional mapping to

the Whissell space so that the output of each module i at a

given time t0i can be represented as a two-dimensional

coordinates point pi(t0i) = (xi(t0i); yi(t0i)) that characterizes

the affective properties extracted from that module at time

t0i. The majority of the categorical modules described in

the literature provide as output a list of emotional labels

with some associated weights at the time t0i corresponding

to the detection of the affective stimulus. Since the Whis-

sell dictionary (Whissell 1989) if composed of more than

9,000 affective words, whatever the labels used, each one

has an associated 2D point in the Whissell space. Follow-

ing the method explained in Sect. 3.1, the components

(xi(t0i); yi(t0i)) of pi(t0i) are calculated.

4.2 Temporal fusion of individual modules: obtaining

a continuous 2D emotional path

Humans inherently display emotions following a continu-

ous temporal pattern (Petridis et al. 2009). With this

starting postulate, and thanks to the use of evaluation–

activation space, the user’s emotional progress can be

viewed as a point (corresponding to the location of a par-

ticular affective state in time t) moving through this space

over time. The second step of the methodology aims to

compute this emotional path by fusing the different pi(t0i)

vectors obtained from each modality over time. The main

difficulty to achieve multimodal fusion is related to the fact

that t0i affective stimulus arrival times may be known

a priori or not, and may be very different for each module.

To overcome this problem, the following equation is pro-

posed to calculate the overall affective response

p(t) = [x(t); y(t)] at any arbitrary time t:

pðtÞ ¼
PN

i¼1 aiðtÞpiðt0iÞ
PN

i¼1 aiðtÞ
ð4Þ

where N is the number of fused modalities, t0i is the arrival

time of the last affective stimulus detected by module i and

ai(t) are the 0 to 1 weights (or confidences) that can be

assigned to each modality i at a given arbitrary time t. In

this way, the overall used affective response is the sum of

each modality’s contribution pi(t0i) modulated by the ai(t)

coefficients over time. Therefore, the definition of ai(t) is

especially important given that it governs the temporal

behaviour of the fusion. As suggested by Picard (1997),

human affective responses are analogous to systems with

additive responses with decay where, in the absence of

input, the response decays back to a baseline. Following

this analogy, the ai(t) weights are defined as:

aiðtÞ ¼ biciðt0iÞe�diðt�t0Þ t [ e
0 t� e

�

ð5Þ

where,

• bi is the general confidence that can be given to module

i (e.g. the general recognition success rate of the

module).

• ci(t0i) is the temporal confidence that can be assigned to

the last output of module i due to external factors (i.e.

not classification issues themselves). For instance, due

to sensor errors if dealing with physiological signals, or

due to facial tracking problems if studying facial

expressions (such as occlusions, lighting conditions,

etc.)

• di is the rate of decay (in s-1) that indicates how

quickly an emotional stimulus decreases over time for

module i.

• e is the threshold below which the contribution of a

module is assumed to disappear. Since exponential

functions tend to zero at infinity but never completely

disappear, e indicates the ai(t) value below which the

contribution of a module is small enough to be

considered non-existent.

By defining the aforementioned parameters for each

module i and applying (4) and (5), the emotional path

that characterizes the user’s affective progress over time

can be computed by calculating successive p(t) values

with any desired time between samples Dt. In other

words, the emotional path is progressively built by

adding p(tk) samples to its trajectory, where tk = kDt

(with k integer).

4.3 ‘‘Emotional Kinematics’’ path filtering

Two main problems threaten the emotional path calculation

process:

1. If the contribution of every fused module is null at a

given sample time, i.e. every ai(t) is null at that time,

the denominator in (1) is zero and the emotional path

sample cannot be computed. Examples of cases in

which the contribution of a module is null could be the

failure of the connection of a sensor of physiological

signals, the appearance of an occlusion in the facial/
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postural tracking system, or simply when the module is

not reactivated before its response decays completely.

2. Large ‘‘emotional jumps’’ in the Whissell space can

appear if emotional conflicts arise (e.g. if the distance

between two close coordinates vectors pi(t0i) is long).

To solve both problems, a Kalman filtering technique is

applied to the computed emotional path. By definition,

Kalman filters estimate a system’s state by combining an

inexact (noisy) forecast with an inexact measurement of

that state, so that the biggest weight is given to the value

with the least uncertainty at each time t. In this way, on the

one hand, the Kalman filter serves to smooth the emotional

path’s trajectory and thus prevent large ‘‘emotional

jumps’’. On the other hand, situations in which the sum of

ai(t) is null are prevented by letting the filter prediction

output be taken as the 2D point position for those samples.

In an analogy to classical mechanics, the ‘‘emotional

kinematics’’ of the 2D point moving through the Whissell

space (position and velocity) are modelled as the system’s

state Xk in the Kalman framework, i.e. Xk = [x; y; vx; vy�Tk
representing x-position, y-position, x-velocity and

y-velocity at time tk. The successive emotional path sam-

ples p(tk) are modelled as the measurement of the system’s

state.

The two well-known main equations involved in the

Kalman filtering technique are defined in the following

way:

1. Process equation:

Xkþ1 ¼ Fkþ1;kXk þ wk

x

y

tx

ty

2

6
6
6
4

3

7
7
7
5

kþ1

¼

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

2

6
6
6
4

3

7
7
7
5

x

y

tx

ty

2

6
6
6
4

3

7
7
7
5

k

þwk

ð6Þ

where Fk?1;k is the transition matrix taking the state Xk

from time k to time k ? 1 (i.e. from one emotional

path sample to the next). The process noise wk is

assumed to be additive, white, Gaussian and with zero

mean. As suggested in the literature (Morrell and

Stirling 2003), its covariance matrix Qk is defined as:

Qk ¼ r2

1
3

0 1
2

0

0 1
3

0 1
2

1
2

0 1 0

0 1
2

0 1

2

6
6
4

3

7
7
5 ð7Þ

where r2 is the intensity of a white continuous-time

Gaussian noise process modelling the 2D point

acceleration (which has not been considered as an

element in the system’s state).

2. Measurement equation:

Yk ¼ HkXk þ zk

xm

ym

� �

k

¼
1 0 0 0

0 1 0 0

� �

k

x

y

tx

ty

2

6
6
6
4

3

7
7
7
5

k

þ zk

ð8Þ

where Yk is the observable at time k and Hk is the

measurement matrix. The measurement noise zk is

assumed to be additive, white, Gaussian, with zero

mean and uncorrelated with the process noise wk. Its

covariance matrix Rk is the identity matrix:

Rk ¼
k 0

0 k

� �

ð9Þ

so that it is assumed that the x and y measurements

contain independent errors with k units2 variance.

Once the process and measurement equations are

defined, the Kalman iterative estimation process can

be applied to the emotional path, so that each iteration

corresponds to a new sample.

The methodology presented in this section has been

put into practice in the context of an IM tool that will

be presented in next section.

5 Multimodal fusion application to Instant Messaging

Instant Messaging is a widely used form of real-time

text-based communication between people using com-

puters or other devices. Advanced IM software clients

also include enhanced modes of communication, such as

live voice or video calling. As users typically experi-

ence problems in accurately expressing their emotions

in IM text conversations (e.g. statements intended to be

ironic may be taken seriously, or humorous remarks

may not be interpreted exactly as intended), popular IM

programs have resorted to providing mechanisms

referred to as ‘‘smileys’’ or ‘‘emoticons’’ seeking to

overcome the IM systems’ lack of expressiveness. This

section aims to show the potential of the multimodal

affective fusion methodology presented in Sect. 4

through the use of an IM tool that combines different

communication modalities (text, video and ‘‘emoti-

cons’’), each one with very different time scales. Sec-

tion 5.1 describes the IM tool and presents the modules

that extract emotional information from each modality.

Section 5.2 explains how the methodology has been

tuned to achieve multimodal affective fusion. Finally,

Sect. 5.3 presents the experimental results obtained

when applying the fusion methodology to an IM emo-

tional conversation.
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5.1 Instant Messaging tool and fusion modalities

Although any publicly available IM tool could be used a

simple ad-hoc IM tool has been designed. It allows two

persons to communicate via text, live video and ‘‘emoti-

cons’’. Figure 8 shows a snapshot of the tool during a

conversation. The tool enables access in real-time to the

following:

1. The introduced text contents, when the user presses the

‘‘enter’’ key (i.e. sends the text contents to his/her

interlocutor).

2. The inserted ‘‘emoticons’’, when the user presses the

‘‘enter’’ key.

3. Each recorded remote user video frame (with a video

rate f = 25fps).

Three different modules are used to extract emotional

information from the IM tool. Each one explores a different

IM tool modality (text, ‘‘emoticons’’ or video) and makes

use of a different set of output emotional categories:

1. Module 1: text analysis module. To extract affective

cues from user’s typed-in text, the ‘‘Sentic Comput-

ing’’ sentiment analysis paradigm presented in (Cam-

bria et al. 2010) is exploited. By using Artificial

Intelligence and Semantic Web techniques, this mod-

ule is able to process natural language texts to extract a

‘‘sentic vector’’ containing a list of up to 24 emotional

labels. ‘‘Sentic Computing’’ enables the analysis of

documents not only on the page or paragraph-level but

even on the sentence level (i.e. IM dialogues level),

obtaining a very high precision (73%) and significantly

good recall and F-measure rates (65 and 68%,

respectively) at the output.

2. Module 2: ‘‘emoticon’’ module. ‘‘Emoticons’’ are

direct affective information from the user. For this

reason, this module simply outputs the list of emo-

tional labels associated to the inserted ‘‘emoticons’’.

Figure 9 shows the 16 available ‘‘emoticons’’ and their

corresponding labels, designed to be a good represen-

tation of each affective state (Sánchez et al. 2006).

Although the use of emoticons could be seen as a form

of self-report and therefore making irrelevant the rest

of modules, not all people use emoticons in the same

way nor with the same frequency. There are differ-

ences in use, for example, depending on the user’s

gender (Wolf 2000) and the cultural differences

impose the level of contextual information required

for communication (Kayan et al. 2006). Even more, a

user could not be willing to directly express his/her

emotional state. For these reasons emoticons can not

be the only emotional sensor, but when used, they

provide reliable information, helping to solve complex

Fig. 8 Snapshot of the Instant

Messaging tool during a

conversation
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emotional misunderstandings for example when sar-

casm is present.

3. Module 3: facial expression analysis module, the one

described in Sect. 2.

5.2 Multimodal fusion methodology tuning

This section describes, step by step, how the multimodal

fusion methodology presented in Sect. 4 is tuned to fuse the

three different affect recognition modules in an optimal

way.

1. Step 1: Emotional Mapping to the Whissell space.

Every output label extracted by the text analysis

module, the ‘‘emoticon’’ module and the facial

expression analyzer has a specific location in the

Whissell space. Thanks to this, the first step of the

fusion methodology (Sect. 4.1) can be applied and

vectors pi(toi) can be obtained each time a given

module i outputs affective information at time toi (with

i comprised between 1 and 3).

2. Step 2: Temporal fusion of Individual Modalities. It is

interesting to notice that vectors pi(t0i) coming from

the text analysis and ‘‘emoticons’’ modules can arrive

at any time t0i, unknown a priori. However, the facial

expression module outputs its p3(t03) vectors with a

known frequency, determined by the video frame rate

f. For this reason, and given that the facial expression

module is the fastest acquisition module, the emotional

path’s time between samples is assigned to Dt = 1/f.

The next step towards achieving the temporal fusion of

the different modules (Sect. 4.2) is assigning a value to

the parameters that define the ai(t) weights, namely bi,

ci(t0i), di and e. Table 5 summarizes the values

assigned to each parameter for each modality and the

reasons for their choice. It should be noted that it is

especially difficult to determine the value of the

different di given that there are no works in the

literature providing data for this parameter. Therefore

it has been decided to establish the values empirically.

Once the parameters are assigned, the emotional path

calculation process can be started following (4) and

(5).

3. Step 3: ‘‘Emotional Kinematics’’ filtering. Finally, the

‘‘emotional kinematics’’ filtering technique (Sect. 4.3)

is iteratively applied in real-time each time a new

sample is added to the computed emotional path. As in

Fig. 9 ‘‘Emoticons’’ designed for the Instant Messaging tool and

their corresponding emotional labels

Table 5 Temporal fusion parameters

# Module 1 2 3

Modality Text ‘‘emoticons’’ Video

Total number

of possible

output

labels

24 weighted emotional labels 16 emotional labels six Ekman’s universal labels (plus

‘‘neutral’’) ? confidence value to each output

label

General

confidence

bi

b1 = 0.65 the general

confidence is assigned the

value of the module’s recall

rate

b2 = 1 the maximum general confidence

value is assigned since emoticons are the

direct expression of user’s affective state

b3 = 0.87 the general confidence is assigned the

value of the module’s general success rate

Temporal

confidence

ci(t0i)

c1(t01) = c2(t02) = 1 the temporal confidence is assigned constant value 1

since the modules do not depend on external factors

c3(t03) is assigned to the tracking quality

confidence weighting, from 0 to 1, provided by

the facial feature tracking program for each

analyzed video frame

Decay value

di

d1 = d2 = 0.035 s–1 value established empirically Irrelevant since the emotional path sample rate is

equal to the video frame rate

Threshold

value e

e = 0.1 value established empirically.
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most of the works that make use of Kalman filtering,

parameters r and k are established empirically. An

optimal response has been achieved for r = 0.5

units/s2 and k = 0.5 units2.

5.3 Experimental results

In order to demonstrate the potential of the presented

fusion methodology, it has been applied to the IM con-

versation shown in Fig. 8 (James’ side). This conversation

is emotionally complex owing to the fact that contrasting

emotions are displayed contiguously (at first, James is

excited and happy about having bought a wonderful new

car and shortly afterwards becomes sad when telling Sue he

has dented it).

Figure 10 shows the emotional paths obtained when

applying the methodology to each individual module sep-

arately (i.e. the modules are not fused, only the contribu-

tion of one module is considered) without using

‘‘emotional kinematics’’ filtering. At first sight, the timing

differences between modalities are striking: the facial

expressions module’s input stimuli are much more

numerous than those of the text and ‘‘emoticons’’, making

the latter’s emotional paths look more linear. Another

noteworthy aspect is that the facial expression module’s

emotional path calculation is interrupted during several

seconds (14 s approximately) due to the appearance of a

short facial occlusion during the user’s emotional display,

causing the tracking program to temporarily lose the facial

features.

Figure 11 presents the continuous emotional path

obtained when applying the methodology to fuse the three

modules, both without (a) and with (b) the ‘‘emotional

kinematics’’ filtering step. As can be seen, the complexity

of the user’s affective progress is shown in a simple and

efficient way. Different modalities complement each other

to obtain a more reliable result. Although the interruption

period of the emotional path calculation is considerably

reduced with respect to the facial expressions module’s

individual case (from 14 to 6 s approximately), it still

exists since both the text and ‘‘emoticons’’ modules’ decay

process reaches the threshold before the end of the facial

occlusion, causing the a1(t) and a2(t) weights to be null.

Thanks to the use of the ‘‘emotional kinematics’’ filtering

technique, the path is smoothed and the aforementioned

temporal input information absence is solved by letting the

filter prediction output be taken as the 2D point position for

those samples.

Regarding performance all the processing can be

achieved in real time when using a multi-core processor.

As an example, in the case of a video of 10 s, the classi-

fication process takes 4.21 ms/frame, text processing

2.96 ms/sentence and the fusion process 2.84 ms/frame:

these times result in a total processing time of 10.01 ms/

frame. Tracking is performed with FaceAPI which works

in two ways: off-line (more precise) or on-line (needing a

Dual Core at least) giving processing times of less than

33 ms.

6 Conclusions and future work

This paper first presents a facial affect recognizer able to

sense emotions from a user’s captured static facial image.

Its inputs are a set of facial parameters, angles and dis-

tances between characteristic points of the face, chosen so

that the face is modeled in a simple way without losing

relevant facial expression information. The system imple-

ments an emotional classification mechanism that

Fig. 10 Emotional paths obtained when applying the methodology to each individual module separately without ‘‘emotional kinematics’’

filtering. Square markers indicate the arrival time of an emotional stimulus (not shown for facial expression module for figure clarity reasons)
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combines in a novel and robust manner the five most

commonly used classifiers in the field of affect sensing,

obtaining at the output an associated weight of the facial

expression to each of the six Ekman’s universal emotional

categories plus neutral. It has been exhaustively validated

by means of statistical evaluation strategies, such as cross-

validation, classification accuracy ratios and confusion

matrices and has been tested with an extensive database of

1,500 images showing individuals of different races and

gender, giving universal results with very promising levels

of correctness.

The expansion to dynamic and multimodal Affective

Computing is achieved thanks to the use of a 2-dimensional

description of affect that provides the system with mathe-

matical capabilities to face temporal and multisensory

emotional issues. A novel methodology is presented able to

fuse any number of categorical modules, with very dif-

ferent time-scales and output labels. The proposed meth-

odology outputs a 2D emotional path that represents the

user’s detected affective progress over time. A Kalman

filtering technique controls this path in real-time to ensure

temporal consistency and robustness to the system. More-

over, the methodology is adaptive to eventual temporal

changes in the reliability of the different inputs’ quality.

The potential of the multimodal fusion methodology is

demonstrated by fusing dynamic affective information

extracted from the different channels of an IM tool. The

first experimental results are promising and the potential of

the proposed methodology has been demonstrated.

This work brings a new perspective and invites further

discussion on the still open issue of multimodal affective

fusion. In general, evaluation issues are largely solved for

categorical affect recognition approaches. Unimodal cate-

gorical modules can be exhaustively evaluated thanks to

the use of large well-annotated databases and well-known

measures and methodologies (such as percentage of cor-

rectly classified instances, cross-validation, etc.). The

evaluation of the performance of dimensional approaches

is, however, an open and difficult issue to be solved. In the

future, our work is expected to focus in depth on evaluation

issues applicable to dimensional approaches and multim-

odality. The proposed fusion methodology will be explored

in different application contexts, with different numbers

and natures of modalities to be fused.
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