
ToyVision: A Toolkit for Prototyping Tabletop Tangible
Games

Javier Marco
Madeira-ITI

University of Madeira, Portugal
javier.marco@m-iti.org

Eva Cerezo, Sandra Baldassarri
Advanced Computer Graphics Group (GIGA)

Computer Science Department,
Engineering Research Institute of Aragon (I3A)

University of Zaragoza, Spain
{ecerezo, sandra}@unizar.es

ABSTRACT
This paper presents “ToyVision”, a software toolkit aimed
to make easy the prototyping of tangible games in visual
based tabletop devices. Compared to other software toolkits
which offer very limited and tag-centered tangible
possibilities, ToyVision provides designers and developers
with intuitive tools for modeling innovative tangible
controls and with higher level user’s manipulations data.
ToyVision is based on Reactivision open-source toolkit,
which has been extended with new functionalities in its
Hardware layer. The main design decision taken has been to
split the Widget Layer from the lower abstraction layers.
This new abstraction layer (the Widget layer) is the
distinguishing feature of ToyVision and provides the
developer with access to a set of encapsulated classes that
give the status of any playing piece handled in the tabletop
while the game is running. The toolkit has been
complemented with a Graphic Assistant that gathers from
the designer all the information needed by the toolkit to
model all the tangible playing pieces. As a practical
example, the process of prototyping a tangible game is
described.

Author Keywords
Tabletop; toolkit; tangible; games; playing pieces; widget;
architecture

ACM Classification Keywords
H5.2. [Input devices and strategies]: User Interfaces

General Terms
Design.

INTRODUCTION
Horizontal computer-augmented surfaces (tabletops) enable
simultaneous and co-located access to digital content to
multiple users around the table. Until recently, the use of

these devices were restricted only to research environments
[29] [31] [9], but now private companies are offering
tabletop solutions [26], and also there is a growing
community of hobbyist designers of tabletops [27] thanks to
new affordable hardware techniques [34]. Games and
entertainment emerge as very promising applications for
these devices, since tables are popular spaces for social
games due to their physical affordances that engage face to
face interaction between players [32].

Recent expansion of tabletop devices gives rise to a new
generation of physical and social videogames which mix
traditional board games with the new possibilities of
digitally augmenting the area of interaction with computer
image and audio. Most of the tabletop games are based on
multitouch interaction [6] [2] in which playing pieces are
virtually projected on the surface and players manipulate
them dragging their fingers on the table.

Several tabletop devices are not only capable of detecting
user fingers and hands, but also of supporting the
identification and tracking of conventional objects placed
on the active surface. Thanks to this functionality, physical
tabletop games based on tangible interaction are also
feasible [11] [20]. By keeping playing pieces in the player’s
physical environment, emotional impact of videogame is
reinforced [16] [14] and digital technology becomes
accessible to other user profiles such as very young children
[24], users with disabilities [21] and the seniors [1].

On the other side, the creation of a tabletop game usually
implies to “hardcode” complex algorithms to process raw
data from tabletop in order to detect and track each playing
piece manipulated on the active surface. This situation
brings a breach between tangible interaction design and the
corresponding implementation tasks, i.e., between designers
and developers. To tackle the problem, several software
toolkits are emerging with the aim of isolating developers
from tabletop hardware, so that they can implement their
application in a higher abstraction level. These toolkits
offer the developer processed data of users’ interactions on
the table, both tactile and through objects, but
unfortunately, for the moment, in a very basic form:
tangible interaction is described though simple events
(object placed, moved or removed). This simplistic
approach is constraining the designer to use playing pieces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00

71

that can be just moved on the table, and therefore, this
situation limits the exploration of more rich tangible
interaction possibilities.

This paper proposes ToyVision, a toolkit for the rapid
prototyping of tangible tabletop games. ToyVision can be
seen as an expansion to already existing and in
development “simplistic” toolkits based on TUIO [16]
(such as reacTIVision [30] or CCV [5]), created to facilitate
designers and developers the implementation tasks. This is
done by supplying them with high processed data centered
in the function that every playing piece plays in the game.
ToyVision proposal is based on Reactivision open-source
toolkit [18], which has been extended with new
functionalities which are oriented to the rapid prototyping
of tabletop games in Action Script 3 (AS3) development
environments (Adobe Flash, Air and Flex). Nevertheless,
the approach exposed in this paper can be easily translated
to other tabletop toolkits and other development
environments different from Reactivision and AS3.

The paper first goes through the current state of tabletop
toolkits, and then proposes a classification of the different
playing pieces to be used in board games. Next, ToyVision
toolkit is presented, followed by a comparison of the design
of a tangible game with and without the use of ToyVision.
Finally, conclusions and future work are outlined.

RELATED WORK
Due to the recent success of multitouch devices, several
toolkits have emerged aimed to implement applications in
the most popular development environments with
independence of the hardware. While earlier multitouch
toolkits merely informed developers about raw-tactile
events (finger added, moved, left from the table) [36] [3]
[22] [35] [23], recent toolkits isolate finger gesture
recognition from developers, by sending high abstraction
events (zoom, rotation, delete…) [13] [12] [28].

The addition of tangible interaction functionalities to
tabletop surfaces requires identifying and tracking
conventional objects placed on the interactive surface area.
In visual based multitouch surfaces [34] this can be
achieved by attaching a printed visual tag (fiducial) [7].
Fiducial recognition is based on a simple principle: a
fiducial is composed of infrared light (IR) reflective and
non-reflective areas, and the visual software detects the
reflective areas as white blobs. Each fiducial has a unique
distribution of blobs, so it is possible to distinguish different
fiducials, and also to track their position and orientation on
the tabletop surface. Using this technique, several
multitouch tabletop toolkits are also supporting interaction
with tagged objects [4] [30] [5] [37].

Software architecture of tabletop toolkits has been
described by Echtler and Klinker [10] using four layers,
from lowest to highest abstraction:

• Hardware

• Calibration

• Event Interpretation

• Widget

A toolkit that follows a layered architecture (see fig. 1)
offers, at least, the Hardware layer in order to hide the
visual hardware and blob recognition algorithms.
Optionally, the toolkit can add the Calibration layer to
correct the position coordinates of each detected blob due to
camera optics aberrations. With the Event Interpretation
layer, the toolkit keeps track of blob events (added, moved
or removed from the tabletop surface). Finally, by adding
the Widget layer, the toolkit may associate sequences of
events in tabletop regions with predefined actions in the
tabletop application.

As toolkits include more abstraction layers, developers
receive higher abstraction processed data from user
interactions. By separating the toolkit from the developing
environment, tabletop applications can be translated to
other devices based on different hardware and even
different toolkit. This is provided by the use of standard
communication protocols between the toolkit and the
development environment. In this context, the TUIO
protocol [16] has become very popular and has been
adopted by most tabletop toolkits [30] [5] [38] [36] [22].
However, TUIO protocol is designed to transmit processed
data from the Event Interpretation Layer (EIL): the toolkit
sends, embedded in TUIO packets, multitouch and tangible
events to the tabletop application (see fig. 1). TUIO support
of tagged objects are limited to three simple events (add,
remove and move/rotate tagged objects) (see fig.1 left).
Although the soon expected launch of the TUIO 2.0
specification is announcing a better support for tangible
tabletop applications, this will actually consist in the
support of untagged objects [18], keeping toolkits that will
support TUIO 2.0 in the same EIL architecture.

There are also some toolkits specific for Tangible User
Interfaces which isolate developers from the intrinsic
complexity of managing several kinds of sensors hidden in
objects. Most of these toolkits use an EIL approach [19],
but also there are some interesting proposals of tangible
toolkits with a Widget Layer architecture [8]. The work
here presented contributes to the state of the art of tabletop
toolkits with the addition of a Widget layer in a toolkit
based on an EIL architecture in order to support advanced
tangible interaction with playing pieces in tabletop games
with a high abstraction development approach.

The challenge of designing a toolkit which includes a
Widget abstraction layer relies in the huge collection of
different existing objects that can be placed on a table.
Nevertheless, this work focuses in board games and,
therefore, the range of playing pieces should be
approachable, as it will be detailed in next section.

72

CLASSIFYING PLAYING PIECES IN BOARD GAMES
Holmquist et al. [15], pioneers on modeling the relationship
between physical objects and an ubiquitous computer
system, proposed the term Tokens to describe any object
used to represent some stored digital information. Later,
Ullmer and Ishii [39] refined the Token definition for
Tangible User Interfaces (TUI), and additionally proposed a
new kind of object, a constraint; both were defined and
related as following:

• Token: any piece that can be placed, moved and
removed to interact with the application.

• Constraint: any physical area in which tokens are
restricted in translation or rotation.

Figure 1. Tabletop toolkits architecture. Left: Current

toolkits’s architecture characterized by only three layers
of abstraction. Right: ToyVision toolkit architecture.

Two kinds of relationships can emerge between Tokens and
Constraints to define the kind of interaction that the user is
able to carry out with the tokens in the limits of the
constraint:

• Associative: The user is limited to place and remove
the tokens inside the constraint area.

• Manipulative: the user is able to manipulate (move and
rotate) the tokens inside a limited area of the constraint.

Later on, Shaer and Jacob [33] expanded this work, by
proposing a Tangible User Interface Description Language
(TUIDL) also based on tokens and constraints, so that any
kind of object involved in a TUI could be modeled in UML,
and translated into a XML specification. Our proposed
Widget layer can be seen as a practical implementation of a
TUIDL for tangible tabletops in which every playing piece

is automatically modeled in an XML specification, as it is
explained in next section.

Starting from precedent classifications and trying to adapt
them to the tabletop tangible context, we propose four
categories of playing pieces: Simple Tokens, Named
Tokens, Constraint Tokens and Deformable Tokens. These
categories try to cover the wider spectrum of possible
playing pieces that may be used in tangible board games (in
a very broad sense, considering any ludic activity that could
be played on a table such as painting or clay modeling), but
should be seen as a starting point to future innovative game
designs.

Simple Tokens
Simple Tokens are the most common playing pieces in
board games: checkers, marbles, chips… Players arrange a
limited amount of playing pieces on the board according to
game rules (e.g. Checkers, Ludo, Stairs and Ladders,
Roulette…) In general, Simple Tokens can be physically
described as small flat cylindrical pieces, all identical with
the exception of the colour used to distinguish the piece of
each player, or to give different values (money, points…).
Usually, most board games need a lot of Simple Tokens to
be played, but grouped in few categories (Checkers only
uses black and white pieces, Ludo uses four colors…).

Named Tokens
Other kind of playing pieces get from game rules a very
specific role and unique name, which are perceived by the
player through their physical appearance. A classic example
is the Chess game: the Tower piece has a different
appearance and rules than the Pawn. It is possible to have
more than one instance of a kind of Named Token in a
game (Chess has four Towers and sixteen Pawns), or to
have unique instances of each playing piece (in card games,
each card is unique in the game, and has a unique name
such as Ace of Diamond, Three of Spade …). A Named
Token physically identifies the player it belongs to (usually
by colour) and the role it has in the game.

Constraint Tokens
A Constraint Token can be described as a playing piece that
acts as a physical constraint of a set of smaller Simple
Tokens. The bigger piece can be moved in the game board
as any other playing piece, but with the manipulation of the
Simple Tokens associated with it, the Constraint Token gets
new meanings. For example, the playing piece of the
Trivial Pursuit game is composed of six triangular small
pieces (Simple Tokens) which can be placed inside a bigger
circular piece (Constraint Token) (see fig. 4) which
represents the progress of each player during the game. In
this particular case, handling of the playing piece is based
on associating (placing/removing) Simple Tokens inside a
Constraint Token. Other playing pieces require more
complex manipulations, for example, in the Roulette game,
players spin a little marble (Simple Token) inside a circular

73

plate (Constraint Token); in this case the playing piece is
based on manipulating (moving/rotating) a Simple Token
inside the Constraint Token.

Deformable Tokens
Finally, there are other playing pieces which do not have a
constant shape, as they change with the manipulations of
the player, as they are made of malleable materials, such us
clay, cardboard, cloth… In a table, children use these
materials in crafts.

Our proposal related to use Deformable Tokens in a game is
that they cannot be identified, but characterized by their
size, shape…

Next section details ToyVision’s distinguishing features
and how the four categories of tokens previously presented
are related to the toolkit.

TOYVISION TOOLKIT
ToyVision is a toolkit aimed to prototype tangible games in
vision based tabletop devices. The architecture proposed is
shown in figure 1 right. The Hardware, Calibration and
Event Interpretation layers are based on the open-source
Reactivision toolkit. However, new functionalities have
been added in the Hardware layer in order to support the
identification of the four categories of playing objects
presented in the previous section. Besides, a Graphic
Assistant tool has been developed in order to allow the
designer to easily model each tangible control involved in
the tabletop game. This Graphic Assistant outputs the
configuration files needed by toolkit to identify and model
all the playing pieces. The other distinguishing feature of
ToyVision toolkit is the Widget layer, created to support
high abstraction coding of games in AS3 development
environment.

Following, the new functionalities of the Hardware layer,
the Graphic Assistant tool, and the new Widget layer are
explained in detail.

Hardware Layer
Original Reactivision’s Hardware layer identifies fingers
and a collection of fiducials placed on the tabletop surface.
These functionalities have been adapted and upgraded in
order to accomplish some new requirements raised from the
proposed classification of playing pieces (see previous
section).

Simple Tokens
Simple Tokens can be visually tracked in the toolkit
Hardware layer using the shape and size of the blob
generated by its base when placed on the table surface. In
order to identify each Simple Token with its player, a
fiducial is needed to be attached to their base. Original
Reactivision’s collection of fiducials can support a large
amount of different objects (up to 180), but fiducial designs
are too complex to be reliably tracked when printed at sizes

smaller than 4 cm diameter when using a normal 640x480
px. resolution camera. For that reason, Reactivision’s
fiducial tracking algorithms have been expanded to track a
new collection of Simple Token’s fiducials, with a design
adequate to be used in small playing pieces (see fig. 2).

Figure 2. Different Simple Tokens (up-left); with Simple

Token’s fiducials attached (up-right); detail of the Simple
Token’s fiducial design (down).

In should be pointed that that fiducials shown in Fig. 2
could be recognized in Reactivision just by extending the
mapping tree file but this would led to confusions between
two and three topological levels fiducials. The
implementation of specific tracking algorithms enables
Reactivision to reliably recognize original fiducials together
with the extended ones.

Named Tokens
In order to develop tabletop games that use Named Tokens,
each playing piece needs a fiducial attached to the base of
the object. That way, toolkit’s Hardware layer can identify
each fiducial by its unique arrange of blobs. ToyVision uses
original Reactivision’s fiducial collection to identify Named
Tokens (see fig. 3).

Figure 3. Animal toys used as Named Tokens (left).
Reactivision fiducials used to identify them (right).

Constraint Tokens
ToyVision Hardware layer can identify Constraint Tokens
by combining the Simple Token and Named Token
identification features previously described. In this case, the
Constraint Token has a unique Reactivision fiducial
attached to its base, and each Simple token is identified
with a Simple Token’s fiducial (see fig. 4).

Deformable Tokens
As these playing pieces do not have constant shape or size,
it is not possible to attach a fiducial to their base. The
original Reactivision’s Hardware layer tracks these playing
pieces as unidentified white blobs. New functionalities have

74

been implemented in the Hardware layer in order to extract
their geometrical attributes: area, perimeter, inertial angles,
and contour segmentation (see fig. 5).

Figure 4. Example of Constraint Token: a “Trivial

Pursuit” playing piece (left). Piece’s base with the fiducial
and a Simple Token placed inside the constraint (right).

Figure 5. Hardware layer identification of Deformable
Tokens. Clay models placed on the tabletop surface (a).
White blobs detected by the toolkit Hardware layer (b).

Contour segmentation of each blob (c).

Graphic Assistant and XML specification
ToyVision’s Graphic Assistant has been designed following
a similar approach to that of existing graphic tools included
in most popular development environments oriented to code
WIMP based applications. These tools enable developers to
graphically arrange controls on an application frame and to
define attributes for each control. After that process,
developers can access to the instantiated classes belonging
to each control in the application code. Our Graphic
Assistant allows the designer to model, in an easy way, all
the data needed by the toolkit (in particular by the
Hardware and Widget layers) to detect and track all the
different playing pieces involved in the game. The
procedure is as follows:

First, the new tangible control must be added to the game
by choosing the category it belongs to: Simple Token,
Named Token, Constraint Token or Deformable Token (see
fig. 6).

Figure 6. Graphic Assistant: Main menu.

Once the category is chosen, the assistant requires the name
of the new tangible control, in order to be identified in the
Widget layer.

Next, the assistant enables the designer to graphically
model the tangible control. To do that, the designer places
the playing piece on the tabletop surface, and an image of
the base of the object is captured by the tabletop camera
and displayed in the assistant. Then, the assistant asks the
designer to graphically introduce all the data needed to
model that playing piece. These data are automatically
translated into an XML specification. This process varies
depending on each token category:

• Simple Tokens (see fig. 7): From the image of the base
of the pieces, the designer defines the size of the token
and a tolerance. This way, any object with a size within
the range of tolerance, will be identified as this
particular tangible control. Also, the designer sets the
number of different kinds of Simple Tokens that will
be used in the game and the total number of pieces of
each kind.

These data are automatically translated into XML
format to be kept in the configuration files using the
following specification:
< SimpleTokens name=”text” size=”number”
tolerance=”number” players=”number”\>

Figure 7. Graphic Assistant: Defining the size (left) of

Simple Tokens (right).

• Named Tokens (see fig. 8): On the image of the
object’s base captured by the camera, the designer
graphically draws the available area to place a fiducial.
The designer also sets the number of copies of that
object to be used in the game. These data are translated
into XML in the following format:
<NamedTokens name=”text”
fidID=”number_of_fiducial_asigned”\>

Figure 8. Graphic Assistant: Defining the fiducial area

(left) of a Named Token (right).

75

• Constraint Tokens: In this case the first step is similar
to the Named Token case; the designer draws the
available area for placing a fiducial on the object’s
base. Then, the designer draws the constrained areas,
choosing from two different options: associative or
manipulative areas.

o Associative areas (see fig. 9): The designer
draws the areas in which one or more Simple
Tokens can be placed or removed.

Figure 9. Graphic Assistant: Defining the Associative

Constraint areas (left) of a Constraint Token composed of
four Simple Tokens in four Associative areas (right).

o Manipulative areas (see fig. 10): The designer
draws the areas in which one or more Simple
Tokens can be moved or rotated.

Figure 10. Graphic Assistant: Defining the fiducial area

(red square) and the Manipulative Constraint area
(yellow rectangle) (left) of a Constraint Token composed

of a Simple Token that can be moved along an axis
(right).

The position of the constrained areas are converted to
polar coordinates relatives to the center and the
orientation of the fiducial. Finally, all these data are
translated into XML format using the following
specification:
<ConstraintToken name=”text” fidID=”num”>

<AssociativeArea name=”text” size=”num”
distance=”num” angle=”num”\>

<ManipulativeArea name=”text”
areaType=”rect” distance=”num” angle=”num”
width=”num” height=”num”\>

<ManipulativeArea name=”text”
areaType=”circ” distance=”num” angle=”num”
radio=”num”\>
…

</ContraintToken>

• Deformable Tokens: In this category, the assistant
only asks for an interval of minimum and maximum
size of blobs belonging to deformable objects to be
tracked, and these data are translated into XML:
<DeformableToken minSize=”number”
maxSize=”number”\>

After the designer has created all tangible controls involved
in the game, the Graphic Assistant exports the XML
specification into configuration files. These files, needed by
the Hardware and Widget layer, are loaded by the toolkit at
launch. The assistant also creates an Adobe PDF document
with all the fiducials required to be attached to each playing
piece. This PDF is ready to be printed, and each fiducial
can be cut and glued on the base of its respective playing
piece (see fig. 11), so that it is ready to be used in the
tabletop game.

Figure 11. Adapting a playing piece to be used in a

tabletop game: Cutting the printed fiducial (a), gluing it
(b), attaching the fiducial to the base of the toy (c).

Widget Layer
The new Widget abstraction layer offers all the programing
tools needed by the developers to access the status of all the
playing pieces placed on the tabletop surface at any
moment of the game. ToyVision Widget layer has been
integrated in the development environment, Action Script 3
(AS3) in our case. This decision allows the use of the
Widget layer with other tabletop toolkits, as far as they use
the same communication protocol, TUIO, as the Widget
layer receives the raw-events from lower abstraction layers
through a TUIO socket.

The developed Widget layer consists of a package of AS3
classes for the Adobe development environments (Flash,
Air, Flex). The main class of this package is “ToyList”.
When this class is instantiated at the beginning of the game
code it loads the XML configuration files exported by the
graphic assistant (see figure 12). With the data recovered
from the XML files, each AS3 class relative to each
modeled tangible control is automatically instantiated.
While the game is running, the “TabletopEvent” function is
automatically triggered each time a tangible control
changes its status (placed, moved or removed). In the
particular case of Constraint Tokens, an event is also
triggered each time any of its associated constraint areas
changes. By using the name given in the graphic assistant
tool, the developer identifies the tangible control which
triggered the event, and writes the code necessary to take
appropriated actions in the game.

public function Game() {
 //instantiate List of Toys
 gameToys= new ToyList(’path to
 configuration XML file’);
 While (true) {//game loop}
}
public function TabletopEvent(toy, eventType)
{
 switch (toy.name) {
 case ‘name1’:
 if (eventType=”add”) {//toy placed}

76

 if (eventType=”removed”)
 {//toy removed}
 if (eventType=”updated”)
 {//toy moved/rotated}
 If (eventType=”constraint”)
 {//toy.updatedConstraint
 // is the area that triggered
 //the toy.constraintEvent
 Switch (toy.updatedConstraint) {
 Case ‘t1’:
 if toy.constraintEvent=”add”
 {//a simple token has been
 //added into this area
 }
 if toy.constraintEvent=”removed”
 {//a simple token has been
 //removed from this area
 }
 if toy.constraintEvent=”updated”
 {//a simple token has been
 //moved in this area
 }
 Break;
 Case ‘t2’;
 …
 break;
 case ‘name2’:...
 ... } }}

Figure 12: Widget layer: Sketched AS3 code for a
ToyVision tabletop game.

DEVELOPING A TANGIBLE TABLETOP GAME

In order to show ToyVision usefulness and its advantages
in terms of simplicity and versatility, the process of
prototyping a tangible tabletop game is outlined in this
section. The AS3 code needed when using a conventional
Event Interpretation Layer (EIL) toolkit, and when using
ToyVision Widget Layer will also be compared.

The game chosen to show this process is a “Pirates” game
which has been developed for the NIKVision tabletop [25].
“Pirates” is a cooperative game in which players have to
work together to sail a pirate ship and to sink other enemy
ships. These actions are carried out by manipulating a set of
toys that take advantage of the tangible interaction
possibilities of computer augmented tabletops:

• A fan toy is used to control the speed and direction of
the ship by spinning the blades of a small fan toy (see
fig. 13A), simulating that the toy is virtually blowing
the ship’s sails.

• A compass toy is used to point in what direction the
player ship should sail to find a ship that can be
attacked. The toy is a small cylindrical hash of optic
fibers which transmits the image projected from the
base of the toy to the top face of the cylinder. A
projected needle points to the nearest enemy ship (see
fig. 13B).

• A set of black and white chips are used to aim the
cannons (see fig. 13C). When a chip is placed on the
tabletop surface, ship’s cannons fire a burst of
cannonballs to the chip direction. Black chips fire

cannonball bursts that spread covering a wide area but
travel short distances, and white chips fire precise long
distance cannon balls.

These playing pieces belong to different token categories
due to their different game functionalities. Next, the way
these functionalities are implemented in the game is
detailed.

Figure 13. NIKVision Pirates game and playing pieces: A.

fan toy, B. compass toy, C. chips

Chips and compass (Simple and Named Tokens)
The first thing to do with these tokens is to attach a printed
fiducial on each toy’s base, so that they can be tracked by
the toolkit’s Hardware layer.

In an EIL toolkit, the ID associated with the fiducial will be
the only way for the developer to handle the corresponding
object in the development environment. The TUIO protocol
will send an event each time the Hardware layer detects that
a fiducial has been placed, moved or removed from the
table. The developer has to handle these three types of
events and the fiducial IDs to implement the adequate game
actions (see fig. 14).

Public function AddTuioObject(tuioObject) {
 //triggered when any fiducial is placed
 Switch (tuioObject.ID) {
 Case 0: //fiducial of white chip
 fireLong(tuioObject.x, tuioObject.y);
 case 1: //fiducial of black chip
 fireShort(tuioObject.x, tuioObject.y);
 case 2: //fiducial of compass toy
 drawNeedle(tuioObject.x, tuioObject.x,
 tuioObject.angle, calcNeedleAngle());
 }}
Public function UpdateTuioObject(tuioObject) {
 //Triggered when fiducial is moved/rotated
 If tuioObject.ID==2
 drawNeedle(tuioObject.x, tuioObject.x,
 tuioObject.angle, calcNeedleAngle());
}
Public function RemoveTuioObject(tuioObject){
 //Triggered when fiducial is removed
 If tuioObject.ID==2 eraseNeedle();}

Figure 14. Pirates game: schematic AS3 game code for
compass toy and chips in EIL toolkits.

In ToyVision, the developer first uses the Graphic Assistant
to give a name to each toy and to model it depending on its
category. With these data, the Assistant automatically
generates a PDF with the fiducials ready to print, cut and
glued on the playing pieces’ base. In the ToyVision Widget

77

layer, a single tabletop event is sent with all the information
needed by the developer (name of the toy involved and kind
of event) to implement the adequate game actions (see fig.
15).

public function TabletopEvent(toy, event) {
 //toy has changed its status
 switch (toy.name) {
 case ‘COMPASS’:
 if (event==”add” or event==”update”)
 drawNeedle(toy.x, toy.y, toy.angle,
 calcNeedleAngle());
 }
 if (event=”remove”) eraseNeedle();
 case ‘CANNON’:
 if (event==”add”) {
 if (toy.fiducial==0) //white chip
 fireLong(toy.x, toy.y);
 if (toy.fiducial==1) //black chip
 fireShort(toy.x, toy.y);
 }}

Figure 15. Pirates game: schematic AS3 game code for
compass toy and chips in ToyVision.

Fan toy (Constraint Token)
The action of spinning the blades is detected by the
Hardware layer thanks to a half black-white dented wheel
in the base of the toy that spins, which is tracked as a white
blob appearing and disappearing at the speed the blades are
spinning (see fig. 16). In consequence, toolkit’s Hardware
layer detects two different blobs related to the fan toy: one,
the attached fiducial, and the other, the white blob that
appears and disappears when the blades spin.

Figure 16. Pirates’ Fan toy modeled as Constraint Token

(left) with a fiducial and an associative area in its base
(right).

In an EIL toolkit, the TUIO protocol sends toy’s movement
and blades’ spin events independently: events related to
fiducials are sent as tuioObject events while events related
to white circular blobs (blades’s spin) are sent as tuioCursor
events (see fig. 17). In consequence, when coding the fan
toy behavior using the data sent by the EIL, the developer
has to implement robust code to find if a tuioCursor event is
related to user’s manipulations of the fan toy to handle it
properly.

On the other hand, using ToyVision, the developer first
models the fan toy in the Graphic Assistant as a Constraint
Token tangible control. In the AS3 environment, a
TabletopEvent is triggered each time the status of the toy
changes, either because it has been placed, moved, or

removed, or because its constraint areas have changed due
to Simple Token manipulations. All the information about
the event is available to the developer: name of the toy, type
of event, ID of the constraint area that has changed, and the
Simple Token status change that may have caused the
modification of the constraint area (see fig. 18).

Public function AddTuioObject(tuioObject) {…}
Public function UpdateTuioObject(tuioObject) {
 //Triggered when fiducial move or rotate
 If tuioObject.ID==fan_fiducial {
 //update position of fan toy
 fan.x=tuiObject.x; fan.y=tuioObject.y;
 fan.angle=tuioObject.angle;
 }
}
Public function RemoveTuioObject(tuioObject){…}
public function addTuioCursor(tuioCursor) {
 //new circular white blob appeared
 //lots of trigonometric calculations to
 //determine if tuioCursor.y and tuioCursor.y
 //is in the right position and orientation
 //in relation with fan.x, fan.y, fan.angle
 //if true then impulse fan
}
public function UpdateTuioCursor(tuioCursor){}
public function removeTuioCursor(tuioCursor) {
 //circular white blob disappeared
 //lots of trigonometric calculations to
 //determine if tuioCursor.y and tuioCursor.y
 //is in the right position and orientation
 //in relation with fan.x, fan.y, fan.angle
 //if true then impulse fan
}

Figure 17. Pirates game: schematic AS3 game code for
treating raw tangible TUIO events in an Event

Interpretation based toolkit.

public function TabletopEvent(toy, event) {
 //toy has changed its status
 switch (toy.name) {
 case ‘FAN’:
 if (event==”constraint”)
 and (toy.updatedConstraint==”t1”)
 and (toy.constraintEvent==”add”)
 {impulseShip(toy.x, toy.y, toy.angle);}
 If (event==”update”)
 {fan.x=toy.x; fan.y=toy.y;
 fan.angle=toy.angle;
 break; }
}

Figure 18. Pirates game: schematic ToyVision AS3 game
code for the fan toy.

In contrast to other toolkits, ToyVision is also capable of
handle tabletop events from un-tagged and deformable
objects. To develop a game that uses this kind of materials
in ToyVision, developer first uses the Graphic Assistant to
create a new playing piece of the Deformable Token kind,
giving a name to it. In the AS3 environment, the developer
can extract the geometrical data (e.g. a list of segments that
compound the perimeter) of any untagged objects
manipulated on the tabletop surface (see fig 19).

78

public function TabletopEvent(toy, event) {
 //toy has changed its status
 switch (toy.name) {
 case ‘deformable’:
 if event==”add” or event==”update” {
 for each (segment in toy.perimeter) {
 //create virtual representation of
 // the un-tagged object}
 }}
Figure 19. Schematic ToyVision AS3 game code to treat

Deformable Tokens.

The consideration of this kind of playing pieces opens
innovative opportunities for tabletop games for using
materials and toys in which attaching a fiducial is not
suitable. In particular, we have used this new kind of tokens
in two simple games developed with ToyVision:

• The Paint game uses conventional brushes to paint on
the table (see fig. 20 left). The brush is modeled as a
Deformable Token: the width of the stroke will depend
on the pressure applied with the brush.

• In the Bugaboo game the players use any kind of
deformable material (clay, cardboard…) to build a path
so that a virtual flea can jump and climb to reach the
fruits (see fig. 20 right).

Figure 20. The Paint game (left) and the Bugaboo game

(right).

CONCLUSIONS
ToyVision toolkit provides developers and designers of
tabletop games with a tool that allows the easy prototyping
of games using a great variety of playing pieces, opening
new possibilities for tangible interaction in tabletop devices.
This has been achieved by adding new functionalities to the
Reactivision Toolkit (in the Hardware layer), developing a
Graphic Assistant to model each playing piece that
automatically generates its XML specification, and adding a
new abstraction layer (the Widget layer) that enables
designers to face in a high abstraction level the
development of a new tangible tabletop game. ToyVision’s
Widget layer provides access to a set of AS3 classes that
give the status of any playing piece handled in the tabletop
while the game is running.

Compared to other software toolkits which offer very
limited and tag-centered tangible possibilities, ToyVision
offers developers with intuitive tools for modeling tangible
controls with richer tangible interaction and user
manipulations data of higher level.

A beta version of the ToyVision toolkit can be downloaded
from http://webdiis.unizar.es/~jmarco/?page_id=297 and
can be used and modified under open-source license. The

modifications added to the Hardware layer of Reactivision
can be easily replicated in other tabletop toolkits based in
the TUIO protocol. Likewise, the Widget layer
implemented in AS3 may be implemented in other
developing environments, and thus, may broaden the
number of designers and developers that could take benefit
of these new tools. In the near future, ToyVision will be
expanded to other environments and to other kind of
tangible tabletop games and applications.

ACKNOWLEDGMENTS

This work has been partly financed by the Spanish
Government through the DGICYT contract TIN2011-
24660.

REFERENCES
1. Al Mahmud, A., Mubin, O., Shahid, S. and Martens,

J.B. 2008. Designing and evaluating the tabletop game
experience for senior citizens. 5th Nordic conference on
Human-computer interaction(NordiCHI '08) pp403-406.

2. Antle, A.N., Bevans, A., Tanenbaum, J., Seaborn, K.,
and Wang, S. 2010. Futura: design for collaborative
learning and game play on a multi-touch digital tabletop.
Fifth international conference on Tangible, embedded,
and embodied interaction (TEI '11). Pp. 93-100.

3. Bespoke: http://www.bespokesoftware.org/multi-touch
4. Bollhoefer, K. W., Meyer, K., and Witzsche, R..

Microsoft surface und das Natural User Interface (NUI).
Technical report, Pixelpark, Feb. 2009.

5. CCV: Community Core Vision Web:
http://nuicode.com/

6. Cooper, N., Keatley, A., Dahlquist, M., Mann, S., Slay,
H., Zucco, J., Smith, R., and Thomas, B. H. 2004.
Augmented Reality Chinese Checkers. Proc. of the 2004
ACM SIGCHI international Conference on Advances in
Computer Entertainment Technology (2005). ACE '04,
vol. 74. 117-126.

7. Costanza, E., Shelley, S. B., Robinson, J. Introducing
audio d-touch: A tangible User Interface for Music
Composition and Performance. DAFx '03 Conference.

8. Dey, A.K., Abowd, G.D., Salber, D. 2001. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications, Human-
Computer Interaction, v.16 n.2, p.97-166, December
2001

9. Dietz, P. and Leigh, D. DiamondTouch: a multi-user
touch technology. In UIST ’01: Proc. of the 14th annual
ACM symposium on User interface software and
technology, pages 219–226. ACM, 2001.

10. Echtler, F., Klinker G. A multitouch software
architecture. In Proc of NordiCHI '08. 2008. pp. 463-
466.

79

11. Heijboer M, and van den Hoven, E. 2008. Keeping up
appearances: interpretation of tangible artifact design.
Proc. of the 5th Nordic conference on Human-computer
interaction: building bridges (NordiCHI '08) pp162-171.

12. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S. and
Serra, T. 2009. PyMT: a post-WIMP multi-touch user
interface toolkit. Proc. of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
'09). Pp. 17-24.

13. Heng, X., Lao, S., Lee, H., and Smeaton, A. A touch
interaction model for tabletops and PDAs. Proc. PPD
’08, 2008.

14. Hinske, S. and Langheinrich, M. 2009. W41K: digitally
augmenting traditional game environments. Proc. of the
3rd international Conference on Tangible and Embedded
interaction (2009). TEI '09, 99- 106.

15. Holmquist L.E., Redström, J., Ljungstrand, P. 1999
Token-Based Access to Digital Information, Proc. of the
1st international symposium on Handheld and
Ubiquitous Computing (1999), p.234-245

16. Iwata, T., Yamabe, T., Poloj, M., and Nakajima, T.
2010. Traditional games meet ICT: a case study on go
game augmentation. Proc. of the fourth international
conference on Tangible, embedded, and embodied
interaction (TEI '10). Pp. 237-240.

17. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. TUIO: A protocol for table-top tangible
user interfaces. In 6th Int'l Gesture Workshop, 2005.

18. Kaltenbrunner, M. 2009. reacTIVision and TUIO: a
tangible tabletop toolkit. Proc. of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
'09). Pp. 9-16.

19. Klemmer, S.R., Li, J., Lin, J., Landay, J.A. 2004.
Papier-Mache: toolkit support for tangible input. Proc.
of the SIGCHI conference on Human factors in
computing systems (CHI '04). Pp. 399-406.

20. Leitner, J., Haller, M., Yun, K., Woo, W., Sugimoto,
M., Inami, M., Cheok, A. D., and Been-Lirn, H. D.
2010. Physical interfaces for tabletop games. Comput.
Entertain. 7, 4, Article 61 (January 2010), 21 pages.

21. Li, Y., Fontijn, W., and Markopoulos, P. 2008. A
Tangible Tabletop Game Supporting Therapy of
Children with Cerebral Palsy. 2nd International
Conference on Fun and Games, Springer-Verlag, pp.
182-193.

22. Libavg web http://www.libavg.de/
23. Lin H.-H., and Chang, T.-W. A camera-based multi-

touch interface builder for designers. In Human-
Computer Interaction. HCI Applications and Services,
2007.

24. Marco, J, Cerezo, E., Baldassarri, S., Mazzone, E.,
Read, J. Bringing Tabletop Technologies to
Kindergarten Children. 23rd BCS Conference on
Human computer Interaction (2009). British Computer
Society, Swinton, UK, UK, ISBN:978-1-60558-395-2.
pp.103-111.

25. Marco, J., Cerezo, E., Baldassarri, S. Tangible
Interaction and Tabletops: New Horizons for Children’s
Games International Journal of Arts and Technology
(IJART). Vol. 5, Nos. 2/3/4. 2012. pp.151-176 ISSN:
1754-8853. Ed. Inderscience.

26. Microsoft surface:
http://www.microsoft.com/surface/en/us/default.aspx

27. NUI Group web: http://nuigroup.com
28. Openexhibits web: http://openexhibits.org/
29. Patten, J., Ishii, H., Hines, J.,and Pangaro, G. 2001.

Sensetable: a wireless object tracking platform for
tangible user interfaces. Proc. of the SIGCHI conference
on Human factors in computing systems (CHI '01). Pp.
253-260.

30. Reactivision: http://reactivision.sourceforge.net/
31. Rekimoto, J. and Saito. M. Augmented Surfaces: a

spatially continuous work space for hybrid computing
environments. Proc. of the ACM Conference on Human
Factors in Computing System (CHI’99), pp. 378–385.

32. Rogers, Y. and Rodden, T. 2004. Configuring spaces
and surfaces to support collaborative interactions. In
O’Hara, K., Perry, M., Churchill, E. and Russell, D.
(eds.) Public and Situated Displays. Kluwer Publishers.
pp. 45-79.

33. Shaer, O. and Jacob, R.J.K. 2009. A specification
paradigm for the design and implementation of tangible
user interfaces. ACM Trans. Comput.-Hum. Interact. 16,
4, Article 20 (November 2009), 39 pages.

34. Schöning, J., Hook, J., Motamedi, N., Olivier, P.,
Echtler, F., Brandl, P., Muller, L., Daiber, F., Hilliges,
O., Löchtefeld, M., Roth, T., Schmidt, D. and von
Zadow, U. 2009. Building Interactive Multi-touch
Surfaces. JGT: Journal of Graphics Tools. Springer.

35. Shen, C., Vernier, F., Forlines, C., and Ringel, M.
DiamondSpin: an extensible toolkit for around-the-table
interaction. In Proc. CHI ’04, pages 167–174, 2004.

36. TouchLib: http://nuigroup.com/touchlib/
37. Trackmate: http://trackmate.sourceforge.net/
38. Touché: http://gkaindl.com/software/touche
39. Ullmer, B., Ishii, H., and Jacob, R. J. 2005.

Token+constraint systems for tangible interaction with
digital information. ACM Trans. Comput.-Hum.
Interact. 12, 1 (Mar. 2005), 81-118.

80

