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The development of Embodied Conversational Agents (ECAs) involves a large number of challenges such as
the modeling of cognitive and affective functions in order to achieve realism and believability in this type
of intelligent agents. An approach to provide ECAs with capabilities for cognitive processing such as
learning, decision making, planning, and perception has been the use of cognitive architectures.

Moreover, the literature reports several affective models for the generation, classification, and manage-
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ment of emotions in ECAs. Nevertheless, there is a need of cognitive-affective architectures that address
the problem of achieving natural interaction and realistic behavior in ECAs. In this paper, we discuss the
state of the art on existing cognitive architectures, affective models, and ECAs, and propose a cognitive-
affective architecture based on Soar and extended with an affective model inspired by ALMA. The pro-

posed cognitive-affective architecture is designed to allow ECAs to include and take advantage of features
such as reinforcement learning, episodic memory, and emotion management.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of intelligent agent and embodied conversational
agent (ECA), introduced by Cassell and Bickmore (2000), have
emerged and progressed during the last years. In particular, an
ECA is a virtual character with conversational and learning skills,
realistic body expression, and the ability to perceive an environ-
ment, reason about it, and act accordingly. The incorporation of
these characteristics in ECAs involves a variety of challenges,
including physical appearance issues, realistic animations and
expressions, cognitive modeling, abilities to interact with humans
and other agents, and ethical issues (Kasap & Magnenat-Thalmann,
2007).

An approach to supporting all these aspects of ECAs is the use of
cognitive architectures. A cognitive architecture can be defined as a
scheme or pattern for structuring the functional elements that
make an intelligent agent as a whole (Langley, Laird, & Rogers,
2009), so it simplifies the design of an integrated system in which
all desired features can be included. In this context, cognitive
architectures seem appropriate means to provide ECAs with capa-
bilities for cognitive processing such as learning, decision making,
planning, and perception.
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There is nowadays a consensus among researchers in fields such
as psychology and neuroscience about the close interaction
between cognition and emotion in humans (Lane, Nadel, Allen, &
Kaszniak, 2000; Phelps, 2006). Particularly, evidence shows that
emotions play an essential role in cognitive functions such as deci-
sion making, learning, and planning (Damasio, 1994). In the field of
computer science, these types of findings have led to the concept of
affective computing, introduced by Picard (1997), which refers to
any type of computing related to emotions or other affective phe-
nomena. In recent years, this research area has reported numerous
contributions (Scherer, Binziger, & Roesch, 2010; Reisenzein et al.,
2013). In this context, a crucial requirement to achieve human-like
behavior in computational agents is to consider affective aspects.
(Scheutz, 2004) suggests that emotions are crucial for the agent’s
action selection, adaptation, social regulation, sensory integration,
motivation, goal management, memory control, learning, and
strategic processing.

Although the literature reports several models for the genera-
tion, classification, and management of emotions (Scherer et al.,
2010; Rodriguez & Ramos, 2015), these models usually disregard
the importance and implications of modeling the interaction
between cognitive and affective aspects for the development of
computational agents with human-like behavior. Moreover, in
spite of the great advances achieved in the last years in the devel-
opment of ECAs, there is a lack of architectures that combine cog-
nitive and emotional aspects. In this sense, there is a need of
cognitive-affective architectures that address the problem of
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achieving natural interaction and realistic behavior in ECAs. This
type of cognitive-affective architecture must be designed to pro-
vide mechanisms that model the interaction between cognitive
and affective processes.

In this paper, we propose a novel cognitive-affective architec-
ture for ECAs that integrates an emotion model based in ALMA
(Gebhard, 2005) and the Soar cognitive architecture (Laird, 2012).
The proposed architecture is designed to allow ECAs to include
and take advantage of mechanisms such as reinforcement learning,
episodic memory, and emotion management. Importantly, this
cognitive-affective architecture can be easily included in existing
ECAs, due to a modular design that does not force an agent to
use unwanted or unnecessary characteristics.

The paper is structured as follows. In Section 2, we present a
discussion of the state of the art regarding ECAs, cognitive architec-
tures, and affective models. In Section 3, we present the proposed
cognitive-affective architecture for ECAs. Finally, conclusions are
presented in Section 4.

2. Related work

In this section, we present related work about cognitive archi-
tectures, affective models, and ECAs. In particular, we discuss
design aspects of representative cognitive architectures, explain
how emotions have been studied and modeled in the fields of psy-
chology and computer science, and analyze how these architec-
tures and models have influenced the development of ECAs. The
analysis of previous research in these areas provides an interesting
panorama of key characteristics and aspects for the development
of novel cognitive-affective architectures.

2.1. Cognitive architectures

Cognitive architectures are designed to build intelligent agents
that can solve a wide range of problems using heterogeneous
knowledge (Langley et al., 2009). This type of cognitive architec-
tures usually include different specialized memories useful for
the development of ECAs, such as procedural memory (defines
the actions that can be performed), semantic memory (stores
known information about the environment), episodic memory
(stores memories of past experiences) and perceptual memory
(serves to recognize and classify objects in a structured way). They
also tend to include control and process components, learning
mechanisms, data representations, and input/output systems. In
this section, we analyze those essential aspects of cognitive archi-
tectures (e.g., memory systems, learning mechanisms, and affec-
tive aspects) based on previous work of the BICA Society
(Biologically Inspired Cognitive Architectures).’

4CAPS (Cortical Capacity-Constrained Concurrent Activation-
based Production System): is a cognitive architecture successor
of CAPS and 3CAPS. The CAPS architecture was capable of building
models for language comprehension and problem solving
(Thibadeau, Just, & Carpenter, 1982). This architecture was
replaced by 3CAPS, which added constraints in terms of the
resources allowed for the system. The 4CAPS cognitive architecture
extends 3CAPS by adding neuroimage measures, enabling the
study of cognitive differences associated with brain injuries (Just
& Varma, 2007). This cognitive architecture has mainly been vali-
dated in medical applications.

ACT-R (Adaptive Control of Thought Rational): is a cognitive
architecture (Anderson et al., 2004) that incorporates various spe-
cialized modules, including perception modules, which provide
mechanisms for real world interaction, and memory modules, for

1 http://bicasociety.org/cogarch/architectures.htm.

declarative memory (semantic and episodic memory) and for pro-
cedural memory (with a production rules set). Among its most
remarkable applications are the Cognitive Tutors for Mathematics,
used in thousands of schools in EEUU.

CHREST (Chunk Hierarchy and REtrieval STructures): is a cogni-
tive architecture that stores its knowledge in a network of chunks,
interconnected nodes. When the agent learns something new, a
new connection of those nodes is created (Gobet, Richman,
Staszewski, & Simon, 1997). This cognitive architecture has been
validated in chess learning simulations and used in kids’ vocabu-
lary improvement scenarios.

CLARION (Connectionist Learning with Adaptive Rule Induction
ON-line): is a cognitive architecture whose distinctive feature is
the total separation between explicit and implicit knowledge and
the way they interact for most tasks (Hélie & Sun, 2010). Clarion
has been used for the modeling of cognitive processes such as
learning and creativity.

LIDA (Learning Intelligent Distribution Agent): is a cognitive
architecture that has a wide variety of computational mechanisms
chosen for their plausibility from a psychological point of view
(Franklin, 2007). It has been used in intelligent task management
systems in military environments and in the control of unmanned
autonomous vehicles.

RCS (Real-time Control Systems): is a cognitive architecture
developed by the National Institute of Standards and Technology
and designed to aid in robot control in laboratory environments
(Albus & Barbera, 2005). RCS has evolved to a real-time control
architecture for general purpose intelligent systems, particularly
in automated factory processes, unmanned vehicles, and military
environments.

Soar: is a cognitive architecture designed to model the intelli-
gent behavior of an agent (Laird, 2008). Soar adopts the idea that
knowledge, planning, reaction to events, and learning can be inte-
grated in a simple and homogeneous architecture. Soar includes a
wide set of mechanisms such as semantic memory, episodic mem-
ory, reinforcement learning, and spatial and visual information sys-
tem. Moreover, this architecture includes an emotion management
system designed to influence its reinforcement learning mecha-
nism (Marinier & Laird, 2008). Soar has been used in different
applications domains such as control of military planes (Tac-Air
Soar) and natural language processing (NL-Soar).

Although most cognitive architectures analyzed lack some
essential features for building ECAs (e.g., episodic memory and
affective mechanisms), they provide a solid environment for add-
ing this type of requirements. In particular, regarding affective
mechanisms, only Soar implements an emotion management sys-
tem in which emotions influence the reinforcement learning pro-
cess. However, this emotion system is limited in terms that
emotion signals are not used by other components of Soar to influ-
ence the global agent’s behavior. Moreover, according to the previ-
ous analysis, ACT-R and Soar seem appropriate architectures to
develop ECAs given their maturity, wide range of features (e.g., dif-
ferent memory systems and learning mechanisms) and available
free implementations in different programming languages. We
provide in Table 1 a summary of the main characteristics (from
the perspective of the development of ECAs) of revised cognitive
architectures.

2.2. Affective models

A critical issue in the modeling of affective aspects in ECAs is the
lack of consensus about the definition of key concepts such as the
term emotion (Izard, 2010). According to Gratch and Marsella
(2004), emotions can be defined as the result of the subjective
interpretation of a meaningful event for an agent. In addition,
(Clore & Gasper, 2000) demonstrated that emotions influence dif-
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Table 1
Main characteristics of revised cognitive architectures.
ACAPS ACT-R Chrest Clarion LIDA RCS Soar

Procedural Yes Yes No Yes Yes Yes Yes

memory?

Semantic memory? No Yes Yes Yes Yes (via sparse Yes Yes
distributed
memory)

Episodic memory? No Yes No Yes Yes (via sparse no Yes (snapshots of
distributed working memory)
memory)

Reinforcement No Yes No Yes Yes No Yes, for operators

learning (SARSA/Q-learning)
Perceptual memory? No Yes Yes No Yes Yes Yes (Soar’s Spatial
Visual System, SSVS)

Affective features? No No No No No No Some (affects only
reinforcement
learning)

Defines temporal or  Yes No Yes No No No No

capacity
constraints?
Implementation Lisp Lisp, TCL/Tk,  Lisp, Java Java Extensible C++, C with interfaces to
Java framework in Java VXworks almost any language;
Java
(Some) applications  Neuroimage Cognitive Chess learning, Simulation of Task management,  Autonomous Tac-Air Soar, NL-Soar
measures, medical Tutors, vocabulary on cognitive autonomous vehicles
applications Learning kids processes vehicles

ferent aspects such as verbal expressions, non-verbal expressions
(e.g., facial gestures and body postures), and cognitive functions
(e.g., decision making, and information retrieval). In this context,
the literature reports diverse affective models that try to explain
and model this influence of emotions in cognition. In this section,
we review some representative affective models organized in
two groups: emotion models and mixed models. The first group
refers to models that explain the generation and classification of
emotions whereas the second group refers to models that combine
different aspects such as emotions, mood, personality, empathy,
and coping.

2.2.1. Emotion models

The emotion models revised in this section attempt to explain
the process of emotion generation and classification mainly based
in the concept of appraisal. Appraisal-based models of emotion
propose that agents constantly evaluate perceived events based
on a set of appraisal dimensions (Lazarus & Folkman, 1984). In this
manner, a particular set of values of those variables are mapped to
a single emotion or a range of related emotions. This evaluation
process also leads to emotional responses. Appraisal models differ
greatly in the number of variables to evaluate and in the mappings
between appraisal dimensions and generated emotions.

The OCC model is the most widely used emotion model for the
development of ECAs (Ortony, Collins, & Clore, 1988). This model
describes a hierarchy of twenty-two emotion types classified in
different categories depending on their relation to external event
consequences (joy, guilt), agent actions (pride, reproach), and
aspects of objects (love, hate). Each of these categories has differ-
ent related appraisal variables (e.g., desirability and likelihood). A
simplified version of the OCC model that includes only twelve
emotions (Ortony, 2002) (i.e., joy, hope, relief, pride, gratitude, love,
distress, fear, disappointment, remorse, anger and hate) has also been
used in the development of intelligent computational agents
(Steunebrink, Dastani, & Meyer, 2009).

The Roseman’s model proposes two appraisal components for
the elicitation of emotions (Roseman, 1996): Motive consistency
(the evaluation of a situation as inconsistent with the goals of
the subject tends to elicit a negative reaction) and Responsibility/
Accountability (who is responsible of that situation: myself, other

agent, or by chance). These values of these appraisal components
determine what emotion will be generated. For instance, a good
deed done by the agent could generate pride. It was later revised
and expanded to generate emotions more similar to the emotions
typically generated by human beings in the same situation.

The Scherer’s model uses up to sixteen different appraisal
dimensions to elicit emotions (Scherer, 2001). The appraisal follows
a complex process based on physiological and psychological
aspects: the multi-level sequential checking model. This sequence
is a step-by-step checking of the sixteen appraisal dimensions
(e.g., Novelty, Pleasure, Relevance, and Urgency), evaluated on dif-
ferent steps and related with different body systems (neuro-
endocrine system, autonomous nervous system, somatic nervous
system).

2.2.2. Mixed models

The models revised in this section combine emotion mecha-
nisms with aspects such as mood, personality, learning, response
selection, coping strategies, and empathy. These models have been
implemented and validated in several cases studies. Moreover,
most of them have proven useful for the development of ECAs.

FLAME is a model that combines the OCC and Roseman apprai-
sal theories and uses fuzzy logic as part of its behavior selection
mechanism (El-Nasr, Yen, & loerger, 2000). FLAME includes learn-
ing methods to improve its perception of the environment, with
associations between objects, events and goals. This model incor-
porates three components: emotional, decision making and learn-
ing components. Its operation cycle is as follows. Events from the
environment are evaluated by the emotional component, which
calculates emotions and intensities. Afterwards, the learning com-
ponent modifies the calculated values using the agent’s previous
experience. These emotions are then filtered and mixed to generate
the agent’s emotional state, and finally, this emotional state influ-
ences the decision making component.

CATHEXIS is a model based on a network of nodes connected to
each other (Velasquez & Maes, 1997). Each of these nodes is a
proto-specialist that represents a class of emotions: anger, fear, sad-
ness, happiness, disgust and surprise. Each proto-specialist is con-
nected to sensors that perceive inner and outer stimuli. There are
four different types of sensors: neural, sensorimotor, motivational
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and cognitive. Data from these sensors modify the intensity of the
emotions of each proto-specialist, combined with information
from other nodes. Finally, a response is selected depending on
the set of emotions present in the system.

ALMA is a model based on three layers: emotion, mood, and
personality (Gebhard, 2005). Emotions represent an affective
response in the short-term and tend to decay quickly once its cause
is removed. Their intensity depends on the particular emotion eli-
cited (Kipp, Dackweiler, & Gebhard, 2011), the current mood, and
personality (Klesen & Gebhard, 2007). In ALMA, the emotion gener-
ation process is based on the OCC model. Mood is defined as a dur-
able emotional state that influences actions from an entity,
representing the medium-term. Mood is expressed with three
independent traits according to the PAD temperament model from
Mehrabian (1996). Personality is based on the OCEAN model
(McCrae & John, 1992) and defined as the set of mental character-
istics of an entity that makes itself unique, representing the long-
term.

EMA is a model proposed by Marsella and Gratch (2009) whose
purpose is to integrate (1) quick, instinctive emotional reactions to
events and (2) further actions due to agent deliberation about its
own emotions (coping). Its operation cycle is as follows. The agent
builds and maintains an ordered sequence of perceived events and
the relations between them, regarding its beliefs and goals. Each of
these events generates multiple appraisal frames that have associ-
ated six appraisal dimensions. An appraisal frame is an extension
of an appraisal with additional information about the environment.
Appraisal frames are then mapped to particular emotions, which
are aggregated in a current emotional state and mood. Finally,
EMA chooses a coping strategy in response to current emotional
state.

Soar-Emote is a model that uses eleven of the sixteen appraisal
dimensions of the Scherer’s model (Marinier & Laird, 2007). It was
implemented in Soar (version 9.3). In this model, the emotion of
the agent is the set of current values of its appraisal dimensions.
Mood is a more lasting emotional state, calculated as the average
of recent emotions. Finally, mood and emotion are combined to
generate a feeling, which defines the current emotional state of
the agent. This emotional state modifies the reinforcement learn-
ing mechanism.

FAtiMA is a model designed to build intelligent agents whose
behavior is influenced by their emotions and personality (Dias,
Mascarenhas, & Paiva, 2014), This model is aimed at creating
believable and empathic agents, as they are more user-friendly
and generally they are perceived as more human-like. This model
implements a layered model of emotions (reactive and deliberative
layers) with integrated planning, learning, and coping
mechanisms.

As a summary, it seems that OCC is one of the most widely used
model of emotions. However, given its complexity, it is usually
simplified and only a few of the 24 emotions proposed are consid-
ered in most applications (Ortony, 2002). This model may be com-
bined with other aspects such as mood and personality to reflect
long-term emotional states in ECAs, as well as with features such
as learning, empathy, and coping to build modern, believable,
and complex ECAs.

2.3. ECAs

There is a large volume of literature that explores the applica-
tions and development process of ECAs. In this section, we discuss
some application domains of ECAs and explain how some of the
models reviewed in previous sections have been used in the devel-
opment of such computational agents.

The affective model ALMA (Gebhard, 2005) has been imple-
mented in ECAs to provide them with emotionally processed infor-

mation useful to improve their conversational abilities.
Particularly, the emotional information generated by ALMA was
used to modulate the verbal and non-verbal expressions of these
ECAs and inform their selection of dialog and linguistic style strate-
gies. (Reithinger et al., 2006) describe how ALMA is incorporated
into the Virtual[Human System, a knowledge-based framework
aimed at creating 3D interactive applications for multi-user/
agent settings. ALMA allows these computational agents to main-
tain affective conversations by implementing emotional reactions
and expressions.

Similarly, EMA (Marsella & Gratch, 2009) has been incorporated
into the architectures of ECAs developed to simulate a diversity of
scenarios. In the The Mission Rehearsal Exercise project, a virtual-
based training program intended to teach soldiers how they should
act in stressful situations, EMA was used to influence the decision-
making of computational agents and thus allow them to achieve
more realistic and human-like behaviors.

The FLAME affective model has been used to dynamically mod-
ify the facial expressions of interactive agents (EI-Nasr, loerger,
Yen, House, & Parke, 1999). Moreover, PETEEI (PET with Evolving
Emotional Intelligence) is an interactive emotional pet that imple-
ments FLAME to develop different emotional states (EI-Nasr
et al., 2000). The simulation of this software pet provides prede-
fined user and pet actions aimed at producing different emotions.
The experiments demonstrate that the learning component and
the fuzzy logic technique improve the believability of the pet.

The affective model Cathexis (Velasquez, 1997) was included in
the architecture of Yuppy, a physical emotional pet capable of dis-
playing certain emotional behaviors according to the particular sit-
uation in which it is involved. Yuppy is able to approach people,
avoid obstacles, and express emotions. This computational agent
has been situated in various controlled environments, demonstrat-
ing that Cathexis is an appropriate model for the development of
ECAs whose expressions and behaviors are believable.

3. Cognitive-affective architecture

Fig. 1 shows the proposed cognitive-affective architecture. This
cognitive-affective architecture is based on Soar (one of the most
complete and developed cognitive architectures) and is extended
with an affective model inspired by ALMA, combining short-
term, medium-term, and long-term affective characteristics (i.e.,
emotions, mood, and personality, respectively). The three-layer
model of emotions defined by ALMA is relatively simple, yet pow-
erful enough and easily integrable in a cognitive architecture like
Soar to use it in the development of ECAs. In the next sections,
we explain the main modules of the proposed architecture, design
and influence of the affective model and finally, the operating cycle
of the cognitive-affective architecture.

3.1. Architecture description

The proposed cognitive-affective architecture is composed of
several components whose interaction provides ECAs with abilities
such as perception, different memory systems, and learning.

The procedural memory component stores part of the system
knowledge in the form of production rules that define the actions
that can be performed by the agent. These rules are ordered by a
preference system to choose from the available possibilities when
several rules are applicable to a given situation. This component
also stores elaboration rules that keep updated variables of work-
ing memory or calculate information derived from them. This
memory system is modified by two mechanisms: (1) chunking,
which adds new production rules as the result of logical deductions
of the system and (2) reinforcement learning, which changes the
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Fig. 1. Proposed cognitive-affective architecture.

preferences associated with the production rules depending on the
previous experience of the agent.

The working memory component stores information about the
current state of the system. It represents a short-term memory that
changes according to new information acquired through the input
of the system or by agent reasoning mechanisms.

The semantic memory component stores information about
the world. It is a specialized learning system that stores and main-
tains up-to-date relevant knowledge.

Furthermore, the episodic memory stores memories of past
experiences. The information is periodically stored as snapshots
of working memory in its entirety, sorted by date and time.

The decision procedure module decides an action when differ-
ent options are available. It takes into account information from
the other components (e.g., memory systems). It is based on
numerical and/or logical preferences.

Finally, the perception module constitutes the input interface
of the system (supports any type of input) whereas the action
module performs the action chosen by the decision procedure, pos-
sibly changing the environment in some way.

3.2. Affective model

As mentioned above, the proposed cognitive-affective architec-
ture is also based on the affective mechanisms proposed by ALMA
(Gebhard, 2005). In this section, we first describe key aspects of
these mechanisms and then explain how they are implemented
in our proposed model.

In particular, the proposed emotion engine is based on the
mechanisms of the emotion model proposed in ALMA, which that
takes into account three layers: emotions, mood and personality
(which represent short-, medium-, and long-term affective charac-
teristics). The functionality of this proposed emotion engine can be
summarized as follows:

o The list of active emotions represents the set of emotions pre-
sent in the agent, initially empty. The values of the initial mood
state (default mood) coincide with the values of the agent’s
personality.

e Every computed emotion (e.g., joy, hate, and pride) is added to
the list of active emotions, encoded as a triad of PAD values,
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according to a mapping between emotions and PAD values. Its
intensity level depends on the particular emotion, current
mood, and personality (Klesen & Gebhard, 2007).

Emotions decay with time. After a certain period, they are
removed from the list of active emotions. This period is
emotion-dependent, as some emotions tend to last longer than
others.

The virtual emotion center (VEC) is defined as the weighted aver-
age of all the emotions present in the list of active emotions,
using the Mehrabian’s model. The VEC is a point in a 3-D PAD
space and its intensity is the module of the vector from the ori-
gin (0,0,0) to this point.

VEC values tend to change erratically, as new emotions appear
and the oldest are removed. Therefore, VEC does not represent
the current mood, but it is useful to make gradual changes in
it, as it changes current mood in a smooth way. VEC attracts cur-
rent mood, with a speed directly proportional to the intensity of
VEC.

The current mood has a tendency to slowly return to the default
mood (representing the personality) in the absence of emotions
in the system. Also, as personality has PAD values, it’s added as
a special emotion to the active emotions list. Personality does
not decay. This addition makes personality more relevant in
the whole emotion engine, as it contributes directly to VEC
computations and influences the rest of emotions in the
system.

Note that the intensity of the VEC (its distance from the origin)
is not the same as the intensity of a particular emotion (a value
that decays with time according to a mathematical function).

Now we explain how this affective mechanisms are imple-
mented in Soar to support in ECAs features such as empathy and
coping as well as to enhance the user experience. We store an
affective state in the working memory for the agent and another
one for each agent or user in the environment. For simplicity,
Fig. 1 shows a system with an agent and a unique user. These
affective states are an instance of the three-layer emotion model
defined by ALMA. In particular, an affective state stores the follow-
ing elements:

e List of active emotions and their current intensity.
e Virtual emotion center.

e Current mood.

o Personality (default mood).

The stored affective state of other users or agents is an approx-
imate interpretation based on the information that the agent can
collect and calculate, and might not match reality.

The following list describes the emotional aspects incorporated
to each component of the architecture:

e The semantic memory includes the default numerical values for
emotions, as defined by the ALMA model.

o The episodic memory stores information that can be used by the
decision procedure to remember past experiences and emotions
associated with them.

e The decision procedure can take into account the current emo-
tional state of the system as defined by the affective states or
previous agent experience.

e The procedural memory stores elaboration rules (red) with map-
pings between OCEAN and PAD values, and functions for the
emotion dynamics that update the affective state of the user
and the agent. Additionally, its production rules can take advan-
tage of the new emotional data stored in the architecture.

e The perception module can capture affective information
directly from external modules (“I am sad”) and combine it with
internally calculated affective information to enrich the archi-
tecture (Ballano Pablo, Baldassarri Santa Lucia, & Cerezo
Bagdasari, 2011).

The incorporation of an affective model allows the architecture
to manage the behavior of the agent integrating information from
different sources (short term memory, episodic memory, semantic
memory, preference system) and taking into consideration the
affective component in the decision procedure. An agent could
react emotionally to the same situation in different ways depend-
ing on its previous actions (and consequences) and its current
affective state. For example, given the perception of a good action
by the user, the agent will probably feel gratitude. The intensity of
that gratitude emotion depends on factors such as the specific
event, the personality of the agent, its current mood, and any addi-
tional information that can be obtained. This approach is similar to
the one used in VirtualAgent by Gebhard, Klesen, and Rist (2004)
and the biggest difference would lie in the use of the additional
possibilities provided by Soar to modify the appraisal of events,
through its architectural mechanisms. For example, it is possible
to change the intensity of an emotion based on the previous expe-
rience of the agent to deal with that emotion, and we can use epi-
sodic memory to retrieve that information.

3.3. Processing cycle and emotional engine of the architecture

In order to describe the operation of the proposed cognitive-
affective architecture, a simple processing cycle of the architecture
is explained based on the Soar processing cycle (Laird, 2012, as
described in Fig. 2). This processing cycle includes five phases:

o Input phase: In this phase new information is captured by the
architecture through its input mechanisms and the values of
the components of the affective states are updated.

e Proposal phase: In this phase operators (actions that can be per-
formed) are proposed depending on the state of the system. All
possible operators are proposed simultaneously and the archi-
tecture is in charge of deciding which one to apply, taking into
consideration information from different sources (short term
memory, episodic memory, semantic memory, emotional mod-
ule). Only one operator can be applied per cycle.

e Decision phase: In this phase, one of the operators is chosen to
be applied according to the preferences of the system. These
preferences take into account other information of the system,
such as affective states of the agent and the user, when deciding
which operator to apply. It is also stored at this time the reward
of the reinforcement learning system as a result of the applica-
tion of the prior operator.

Application phase: In this phase the chosen operator is applied.

The actions of this operator can update the working memory,

retrieve information in other memories and/or provide informa-

tion to the environment.

Output phase: In this phase information and orders determined

during the application of the operator are sent to the

environment.

Running in parallel to the ordinary processing cycle of the archi-
tecture shown above, the emotional engine updates periodically
the values of the different emotional components of the architec-
ture, at a fixed rate (for instance, 5s). These operations are
performed:
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Elaborate State

Input Propose Operators

Decision Procedure:
Select Operator

Apply Operator Output

Fig. 2. Soar processing cycle.

updateEmotions (){
updateVirtualEmotionCenterAgent();
updateVirtualEmotionCenterUser();
updateCurrentMoods();

}

The virtual emotion centers update computes the decay of emo-
tions, and performs a weighted average for the current emotions of
the system. This updates the virtual emotion center (PAD values)
for the agent and the user. With the new VEC, the current moods
for the agent and user can be calculated. We currently use a mod-
ified push & pull function as defined by ALMA (Gebhard, 2005). The
current mood value follows VEC, more quickly the further it is
(reflecting more accurately quick emotional changes). Current
mood value can never reach VEC, at least theoretically. In practice,
VEC values change so quickly that current mood is constantly fol-
lowing VEC, with no inactivity situations.

4. Conclusions

This article presents a study on existing cognitive architectures
and affective models, describing their possibilities and making a
critical evaluation of their limitations. One of the major problems
is the lack of integration between cognitive and affective aspects,
essential for up-to-date ECAs. We propose a cognitive-affective
architecture based on Soar, extended with an affective model
based on ALMA, which allows a holistic approach to the issue. Hav-
ing all the possibilities of a powerful cognitive architecture being
enhanced with affective abilities is a good starting point for the
development of state-of-the-art intelligent agents.

This architecture allows to overcome some of the limitations of
both Soar and ALMA. Soar is greatly improved by integrating an
emotion model. ALMA also benefits from being integrated in a cog-
nitive architecture. Particularly, Soar’s episodic memory allows
ALMA to have easy access to previous experience of the agent, its
emotional state in the past and the experiences related to it, to
adjust any kind of characteristics like emotion intensity.

Other approaches have been proposed to address these kind of
issues of integrating emotions with a cognitive architecture. For
instance, Marinier’s work on Soar-Emote (Marinier & Laird, 2008)
is certainly remarkable, but emotions only modify the reinforce-
ment learning system, and we believe that the emotional state of
the agent should modify its whole behavior to be able to support
believable ECAs. Other approach is EMA, built on top of Soar
(Marsella & Gratch, 2009). It is a very powerful and comprehensive
integration of emotions on a cognitive architecture, mixing
together classic Al paradigms (max-utility of states), STRIPS plan
representation, BDI model and an appraisal model largely based
on OCC variants. However, power comes with a price: it is somehow
difficult to get the full potential of all these features (Lin,
Spraragen, & Zyda, 2012), as it requires the ECA developer or
domain expert model to choose some values ad hoc (like expected

utilities of states) and complicates the integration of EMA with
existing ECAs.

The presented architecture is simpler, yet powerful enough to
offer a wide range of features. One of its main goals is to be easily
integrable with previous systems, and to provide cognitive and
affective capabilities to an agent without unwanted interference
with its performance.

We are now integrating the proposed architecture in the VOX-
System (Ser6n & Bobed, 2016), a system developed by the GIGA
Affective Lab? that explores the synergies between the world of
the ECAs and semantic information. It is based on the use of ontolo-
gies and logical reasoners which use description logic, allowing an
ECA to be enhanced with knowledge-related capabilities. We expect
that the integration of a cognitive-affective architecture with emo-
tional mechanisms that can influence the behavior of the agent will
increase the realism and believability of the ECA, and improve the
user experience.
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