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Abstract

We present a powerful technique to simulate and approximate caus-
tics in images. Our algorithm is designed to produce good results
without the need to painstakingly paint over pixels. The ability to
edit global illumination through image processing allows interac-
tion with images at a level which has not yet been demonstrated,
and significantly augments and extends current image-based mate-
rial editing approaches. We show by means of a set of psychophys-
ical experiments that the resulting imagery is visually plausible and
on par with photon mapping, albeit without the need for hand-
modeling the underlying geometry.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—3D Graphics; I.4.10 [Computing Methodologies]: Im-
age Processing and Computer Vision—Image Representation

Keywords: Image-based material editing, high dynamic range
imaging, image processing

1 Introduction

It is a well-known fact that the human visual system is not a
simple linear light meter. As a side-effect, this means that in graph-
ics applications we can sometimes get away with imperfect simu-
lations. The challenge is to understand what type of inaccuracies
tend to go unnoticed, and which ones are easily spotted. We are
interested in extending the set of tools available to artists to effect
high level changes in single images, at much reduced labor costs,
compared with painstakingly painting over all pixels. We have al-
ready seen very interesting advances in this field, such as retextur-
ing objects with arbitrary textures [Fang and Hart 2004; Zelinka
et al. 2005; Fang and Hart 2006], creating translucent materials or
objects rerendered with arbitrary BRDFs [Khan et al. 2006], or im-
age editing in general [Oh et al. 2001]. We focus in this paper on
altering light transport on the basis of a single image which, to our
knowledge, has not been attempted before.

We specifically consider the effect some extreme material ed-
its have on their environment and on human visual perception. In
particular, changing an object to transparent during an image edit
would have an effect on light transport: nearby diffuse surfaces
would exhibit caustics. While their exact calculation is expensive,

Figure 1: Example of light transport editing. Top left, original im-
age. Top right, transparent mill following the approach in [Khan
et al. 2006]. Notice the absence of caustics. Bottom: final result,
with caustics added with our algorithm.

several approaches exist to approximate the solution and obtain
faster frame rates, usually taking advantage of the GPU [Szirmay-
Kalos et al. 2005; Shah et al. 2006; Wyman 2005; Wyman 2007].
All existing approaches, however, build a caustics map in 3D space,
where the geometry of the objects and the position of the light
sources are known. Such caustics maps are generally computed
in three distinct steps [Wyman 2008]. In the first step, photons are
emitted from the light source, passed through transparent objects,
and deposited onto non-transparent surfaces. The second step then
uses these photon locations as point primitives, rendering them into
the caustic map. The third step projects the caustic map onto the
scene. Several different variations have been proposed, including
minimizing the number of photons [Szirmay-Kalos et al. 2005], ef-
ficient schemes to collect photons in a caustic map [Wyman and
Davis 2006], or computing caustics for each object, rather than
for each light source [Wei and Kaihuai 2007]. Various techniques
which improve quality and performance are also known [Kruger
et al. 2006; Wyman and Dachsbacher 2008; Wyman 2008].

In this work we limit ourselves to the more difficult case of
single-image inputs. To effectively simulate plausible caustics, the
challenge lies in the fact that 3D shape will have to be estimated
from the image itself, an inherently under-constrained problem.
While multi-camera and video-based solutions would enable us to
extract depth more accurately, we envisage our algorithms to find
utility in image editing programs such as PhotoshopTM.



To account for the reduced accuracy with which we can estimate
the geometry of the environment depicted in the image, we rely
heavily on the limitations of human visual perception. By means
of a psychophysical study, we show that while humans are adept at
detecting caustics, they are very inaccurate at predicting their shape.
We therefore follow the rationale that perceptually plausible rather
than physically accurate solutions are both desired and sufficient in
our case.

The contributions of this paper are as follows. First, we intro-
duce a novel algorithm that can produce light transport edits on a
single image, in the form of caustics. We show that for simple ge-
ometric configurations the caustics obtained with our algorithm are
perceptually equivalent to the physically correct solution. Second,
with the aid of psychophysics we show that for more complex ob-
jects our algorithm produces caustics that are perceived as percep-
tually equivalent to ground-truth, photon-mapped caustics. Third,
we demonstrate that our caustics are on par with output produced
by professional artists, but at a fraction of the time.

In the following, we outline the reasoning behind our approach
in Section 2. Our algorithm is then described in Section 3, with
results shown and validated in Sections 4 and 5. Conclusions are
drawn in Section 6.

2 Motivation

Let us consider a homogeneous transparent object, having a con-
stant index of refraction. Since light propagation at our scale of in-
terest is rectilinear, the occurrence of caustics is determined by the
shape of the refracting geometry and the placement of light sources.
A narrow beam of rays may enter and exit a transparent volume at
points P1 and P2, causing refraction according to Snell’s law.

Assuming that the dielectric boundaries at entry and exit points
(P1 and P2) are locally smooth, we may view this pair of surface
areas to constitute a small segment of a thick lens. Dependent on
the orientation of the surface normals at P1 and P2, the lens segment
will be either converging or diverging according to a limited number
of configurations1.

Similarly, each pair of surface points on the transparent object
forms a separate segment of a thick lens. If the local curvature
around surface points is consistent with the global curvature, then
all surface points form part of the same thick lens, resulting in a
very simple caustic (see the real sphere in Figure 5). In the limit the
global curvature is identical to that of a thick lens.

Conversely, with increasing complexity of surface curvature, the
object will cease to resemble a single lens, but can be thought of
as a collection of segments belonging to a set of different thick
lenses (Figure 2, left). The number of thick lenses that together
would create the same caustic as the object itself, is indicative of
the complexity of the caustic. However, we treat here a heavily
under-constrained problem, with only the approximate shape of the
camera-facing surface of the object available to us (Section 3.1). As
a consequence, we have no knowledge of the back-facing surface.
Nevertheless, Khan et al [2006] showed that this has little influence
on the identification as a transparent object. We assume that this
result extends to caustic rendering (an assumption further backed
by our psychophysical analysis in Section 5), and therefore ignore
the backface in preference of analyzing the frontface of the object
only. Thus, we simplify our thick lens approach and interpret the re-
covered surface as a collection of thin lens segments, which refract
incoming light and thus generate caustics (Figure 2, right).

A convex thin lens is circularly symmetric, which gives rise to
light being focused at a single point, as shown in Figure 3 (left). If

1The three possible converging lenses are biconvex, plano-convex and
concave-convex; the three possible diverging lenses are biconcave, plano-
concave and convex-concave [Born and Wolf 1999].
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Figure 2: Left: a simple object constructed from thick lens seg-
ments. Right: our thin lens simplification.
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Figure 3: Perfect symmetry of a theoretical thin lens (left) causes
light to converge at the focal point, where a diffuse surface is
placed. If the lens were replaced with an arbitrary surface (right),
the residual symmetry in the line of interest will contribute to a
caustic at the same focal point.

the symmetry were broken, for instance by replacing the thin lens
with an arbitrary surface, then the amount of residual symmetry
would determine how much light is focused along the line of in-
terest, shown in Figure 3 (right), while the remainder of the light
diverges into different directions. This is similar to how photons
would be refracted by the surface, distributing their energy along
the line of interest; in a photon-mapping approach, caustics would
then be obtained by estimating radiance. In our method, we obtain
a map representing the caustic pattern that would be cast by an ob-
ject by computing the amount of symmetry present for each point
of that object.

Ideally, we would like to detect symmetry with respect to the
position of the light source. However, with only one image at our
disposal, we are limited to detecting the degree of symmetry with
respect to the viewpoint. For a spherically symmetric object our
approach will therefore be accurate, while for asymmetric objects
the physical error could be large. However, we demonstrate in Sec-
tion 5 that perceptual equivalence can be maintained even for large
discrepancies between the camera and the light positions. We spec-
ulate that this is due in part to humans’ inability to predict the shape
of both caustics and light directions [te Pas and Pont 2005].

Various techniques exist to detect symmetry in images. Morpho-
logical approaches such as median-axis transformation or thinning
can only be applied to binary images, and the outlines of the ob-
ject usually need to be smoothed. Intensity gradients tend to be
sensitive to contrast in addition to geometry (see Tyler [1996] for
a review). We are interested in finding a robust measure which re-
quires no previous knowledge or pre-processing of the image. We
find such measure in the frequency domain, where local geometric
symmetries can be found in an image by analyzing its phase infor-
mation [Kovesi 1997; Wu and Yang 2005; Xiao et al. 2005].



Phase symmetry appears to play a role in human vision, which
perceives features at points where the phase information is highly
ordered [Morrone and Burr 1988; Wichmann et al. 2006], poten-
tially pre-attentatively enhancing the recognition and reconstruction
of shapes and objects [Wagemans 1995; Zabrodsky 1993]. Phase
symmetry is also used in computer applications ranging from seg-
mentation [Rosenfeld 1986] and feature detection [Kovesi 1996;
Yuan and Shi 2005] to image understanding [Openheim and Lim
1981; Piotrowski and Campbell 1982]. On this basis, we argue that
phase symmetry may help simulate plausible caustics. The results
of our psychophysics tests in Section 5 confirm that this is a viable
approach.

3 Simulating Caustics

The problem of adding a caustic to an image can be split into sev-
eral stages. First, the image is preprocessed to obtain a depth map,
serving as a rough representation of the object’s geometry. Second,
the recovered geometry is analyzed to establish likely caustic pat-
terns that such an object may cast. As previously mentioned, this
analysis takes the form of symmetry detection, for which we em-
ploy an algorithm that works in frequency space and makes mini-
mal assumptions on its input. Finally, the luminance channel of the
image is varied according to the projected caustic patterns. These
steps are discussed in the following sub-sections.

3.1 Depth Recovery

Given that global illumination is an inherently three-dimensional
process, we must first approximate the 3D object depicted in the
image. We rely on the depth-map recovery algorithm by Khan
et al [2006]. Depth recovery starts by applying a bilateral fil-
ter [Tomasi and Manduchi 1998] to the luminance values of the
object’s pixels, obtaining the signal D(x,y). This signal is then re-
shaped to produce the final depth values [Khan et al. 2006].

This approach is based on the idea of ”dark-is-deep” which can
be seen as one (of possibly several) components of human depth
perception [Langer and Bülthoff 2000]. We demonstrate here that
it can also be used to produce procedural, perceptually-plausible
caustics, relying on two key insights. First, we will produce a caus-
tic from the perspective of the view-point, given that this is the only
view available from a single image. While physically inaccurate,
statistical symmetries of the transparent object ensure that for our
purposes, in most cases this is a reasonable approximation. Second,
with this approach, the depth map is both created and used from the
same perspective, so that systematic errors introduced by the depth
extraction algorithm do not become perceptually distracting.

3.2 Phase Symmetry

To detect symmetries in the recovered depth map, we follow the
approach of Kovesi [Kovesi 1996; Kovesi 1997], which has the
desirable property that no assumptions on the input are required.
However, while Kovesi uses the intensity values of the image as
input, thus providing a low-level view of symmetry, we use the
depth map instead. This allows us to identify higher level struc-
tures based on the recovered geometry. The phase of the depth map
at each location is obtained by decomposing it into its different fre-
quency components: we convolve it by even-symmetric (sine) and
odd-symmetric (cosine) wavelet filters operating at different scales.
We use log Gabor filters, which have the desirable property of hav-
ing a Gaussian transfer function on the logarithmic frequency scale,
consistent with the characteristics of our visual system. Symmetry
appears as large absolute values of the even-symmetric filter and
small absolute values of the odd-symmetric filter [Kovesi 1997].

Figure 4: From left to right: segmented mill from Figure 1, recov-
ered depth map [Khan et al. 2006] and two maps with 1 and 20
orientations respectively.

A weighted average combines information over multiple scales n
and multiple orientations θi, yielding the following symmetry map
S(x,y):
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where A and Θ represent amplitude and phase respectively and T is
an estimate of the signal noise. Details of the implementation are
provided in the appendix.

The two parameters in this equation are the angular interval be-
tween filter orientations θi (which defines the number of directions
d where symmetry is searched for) and the angular spread of each
filter (which is a Gaussian with respect to the polar angle around
the center). Ideally, we seek the minimal necessary angular over-
lap to achieve approximately even spectral coverage [Kovesi 1999];
angular overlap is given by the ratio of the angular interval be-
tween filter orientations and the standard deviation of the angular
Gaussian function used to construct filters in the frequency plane
θ/σθ . Our experience indicates that good results are achieved with
θ/σθ = 1.2, which is the value used for all the images in the paper.
The number of directions d varies between 1 and 20 (see Table 4),
and is the only user-defined parameter of the symmetry detection
algorithm. Direction d = 1 is defined as the direction yielding the
highest symmetry for a given object, for which an initial search is
performed at one-degree increments over the full angular space, a
process that takes only a few seconds. Successive directions speci-
fied by the user are then defined according to this reference.

Intuitively, increasing the number of search directions will create
a progressively more complex pattern, given that more symmetries
will be detected, thus yielding more complex combined patterns.
The degree to which this happens depends on the geometrical com-
plexity of the object. Very simple objects like the sphere in Figure 5
are relatively invariant to changes in d, but the resulting caustics are
very similar to the physically-correct ones. The influence of d on
more complex objects will be analyzed in Section 4.

3.3 Luminance Adjustment

To apply the caustic map S(x,y), we first obtain its projection
S′(x,y) onto a user-defined quadrilateral projection area. This is
achieved by means of a simple perspective transform. In general,
shadows cast by the opaque object provide a reasonable first indi-
cator of a suitable quadrilateral projection region (see Figure 5, left
and middle).

By analysing the silhouette of the shadow, in combination with
the silhouette of the shadow-casting object, it may be possible to



Figure 5: From left to right: Detail of the original picture, with user-
defined projection area. Original focused caustic, and its projected
version. Final result, shown next to a real transparent sphere for
comparison purposes.

infer the orientation of the underlying plane. However, we are not
aware of robust solutions to this problem. Moreover, in the case
of non-planar surfaces, further depth map extraction would be re-
quired to determine how the caustic map should be projected.

To avoid these complications, we assume the caustic to be
mapped onto a planar surface, adopting a simpler user-assisted ap-
proach similar to Mohan et al’s [2007], whereby the user specifies
the vertices of the projection region by just clicking four points lo-
cated approximately around the shadow region. An additional ad-
vantage to this solution is that the user implicitly and naturally ac-
counts for the fact that the transparent object may be some distance
away from the surface that exhibits the caustic.

We then modify the original image according to the following
operation on the luminance channel:

Lc(x,y) = L(x,y)+αS′(x,y) (2)

where α represents a weighting factor to control its apparent bright-
ness, and Lc(x,y) is the luminance channel of the final image (see
Figure 5 (right)).

4 Results

The choice of the number of search directions in the phase sym-
metry has an impact on the appearance of the resulting caustic, as
shown in Figure 6. Fewer directions in general yield simpler, more
focused caustics, whereas increasing the number of directions cre-
ates more complex patterns. Note that the apparent degree of sharp-
ness in the mapped caustics w.r.t. the number of directions analyzed
depends on the specific object and the corresponding ratio defining
S(x) in Equation 8. Usually, it is desirable to have a mixture of
both focused and complex patterns to better simulate the appear-
ance of real-world caustics. Several caustics maps can be combined
in those cases using:

Lc(x,y) = L(x,y)+∑
i

αiS
′
i(x,y) (3)

However, our experiments revealed that combining up to two sym-
metry maps usually suffices in producing plausible imagery. Ta-
ble 4 shows the number of caustics maps and directions d for each
image in this paper.

Figure 7 shows three real-world objects and their caustics com-
puted with our algorithm. The real objects have not been changed
to transparent for demonstration purposes. It can be seen that, for
simple objects such as the soda can, the algorithm yields results
very similar to those obtained in real life (as in the case of the
sphere in Figure 5 and the vase in Figure 8 (top)). As the object
becomes progressively more complex, like the chess piece and the
elephant figurine, the caustics become more complicated and less
predictable for an observer. Nonetheless, the caustics produced by

Object Maps d1 d2 Object Maps d1 d2
Mill 2 1 20 Phone 2 1 4
Can 1 2 Sphere 1 4

Horse 1 4 Skull 2 4 20
Elephant 1 20 Vertebrae 2 4 20

Vase 2 1 12 Dolphin 2 4 20
Doll 2 1 12 Bull 2 4 20
Car 2 1 12

Table 1: Number of caustics maps and directions d for the images
in the paper.

Figure 7: Real objects with the caustics obtained with our algo-
rithm. For simple objects such as the soda can, the caustics obtained
accurately resemble those that would occur in real transparent ob-
jects. For more complicated objects, it starts diverging from the real
solution but still produces plausible results.

our algorithm continue to be commensurate with the expected vi-
sual complexity, thereby remaining plausible (Figure 8 (bottom)).
This will be validated by means of psychophysical studies in Sec-
tion 5, while further results are shown in Figure 9.

5 Psychophysics

We claim that the human visual system cannot reliably predict
caustics for relatively complex geometries. A very simple test sug-
gests that this is so: Figure 10 shows two images of crystal fig-
urines. One image has photon-mapped caustics, which we take as
ground-truth; the other has caustics painted by a digital artist. We
then asked 36 participants which one they thought was real. Even
though both images present clear differences in the shape and con-
centration of caustics, none was chosen above chance: 17 people
chose the photon-mapped image, compared to 19 people who chose
the artist’s impression.

Does our algorithm perform as well as this artist? To find out,
we performed two experiments, described below. The first assesses
the level of tolerance that humans exhibit with respect to errors in
caustics, while supporting our choice of algorithm to simulate them.
The second experiment is then a ranking of our algorithm against
several images on which artists have painted their impression of
caustics. We have taken this specific approach since the only way
to produce caustics in existing images is currently by painting over
pixels.

A set of 44 participants took part in our first study, and 87 dif-
ferent observers partook in the second, all of them having reported



Figure 6: The influence of the number of directions. From left to right, caustics obtained searching for symmetries in 1, 2, 4, 12 and 20
directions respectively. The complexity of the caustic pattern increases accordingly.

Figure 8: Two full results, showing transparent objects casting
caustic patterns near their base (transparency achieved using [Khan
et al. 2006]). The shape of the caustic for the vase is relatively sim-
ple due to the high degree of symmetry of the object, whereas for
the elephant is more complex. Both produce perceptually plausible
results. Insets: original images.

normal or corrected to normal vision. They were naı̈ve as to the de-
sign and goals of the experiments, and included computer graphics
graduate students as well as non-experts.

5.1 Experiment 1: Validation against 3D Rendering

In this experiment, the first question answered is whether our al-
gorithm produces images which are visually as plausible as a full
3D photon mapping simulation. For this, we employ four different
3D opaque objects of increasing geometric complexity: skull, ver-
tebrae, dolphin and bull (Figure 11). For each one, on the one hand,
the algorithm described in this work was applied: phase symmetry
was computed in image-space from the opaque renders, then com-
posited into a similar image with a transparent version of the object,
thus simulating caustics. Note that no 3D information was used to
derive the caustics at this stage. On the other hand, regular photon

Figure 9: Additional results adding caustics to the doll, car and
phone images.

Figure 10: Computer generated crystal figurines. Left: photon-
mapped caustics. Right: caustics painted by an artist.

mapped caustics were rendered for the transparent versions, taken
advantage of the true 3D information of the objects. The stimuli
were then used in a paired comparisons test.

The second question is whether a simpler algorithm would also
produce plausible caustics. If so, then this would indicate that our
proposed algorithm is overly complicated, and a simpler solution
would suffice. In particular, one might reconstruct approximate ge-
ometry from the image, and then render them directly with photon
mapping. One of the simplest approaches to generate geometry is
to assume that objects are globally convex, thus enabling their sil-
houettes to be revolved. This approach was added to the paired
comparisons test.

Finally, we assess whether knowledge of the light direction in
the scene is important for constructing a believable caustic. To this
end, each stimulus was recreated for 4 different light positions, with
one of the light directions coinciding with the viewpoint. This test



Figure 11: The four objects used in our first psychophysical test.
From left to right: skull, vertebrae, dolphin and bull.

Scene ξ u Angle ξ u
Skull 0.790 -0.068 0 0.903 0.040
Vertebrae 0.903 -0.047 60 0.903 0.044
Dolphin 0.966 0.240 120 0.909 0.021
Bull 0.972 0.249 180 0.914 0.020

Table 2: Coefficient of consistency ξ and coefficient of agreement u
per scene and per angle.

allows us to determine if the error introduced by our algorithm (it
generates the caustic from the viewpoint, rather than from the light
source) in any way harms visual impression. Figure 12 shows the
complete set of stimuli for the skull and bull objects.

For each object and light position, we employed a balanced
paired comparison test, for a total of 48 pairs (4 scenes × 4 light
positions × 3 rendering algorithms), shown side-by-side in random
order. The display is a calibrated 21” TFT LCD monitor (1800 ×
1600 resolution, 60 Hz refresh rate) with an approximately 150:1
contrast ratio. The participants had to perform a two-alternative
forced-choice (2AFC) to answer the question Which image con-
tains the caustics that look more real to you?. Upon request, the
concept of caustics was explained to each participant individually.
All the participants were informed that all the images were com-
puter generated, and that there was not a right or wrong answer.
They were also told that the images in each pair were identical ex-
cept for the caustics. They were previously trained with a different
set of images until they felt confident with both the question and the
procedure.

As a paired comparisons test is an indirect way to infer a rank or-
der of the three algorithms, it is possible that circular triades occur.
For instance a participant may indicate the following preference or-
der: A1 > A2 > A3 > A1, which signifies an inconsistency. The
presence of inconsistencies can be measured with the coefficient of
consistency ξ [Kendall and Babington-Smith 1940]. Its value will
tend to 1 the more consistent the results are. Values for each scene
and for each light direction (angle) are given in Table 2, showing
that consistency is overall very high.

The coefficient of agreement u, also shown in Table 2, measures
whether the three algorithms received equal preference (low scores)
or could be discerned based on preference (high scores). We see
that for simple geometries (Skull, Vertebrae), participants found
it difficult to indicate a preferred algorithm, whereas complicated
geometries, with associated complex caustics, lead to more pro-
nounced viewer preference.

These results are consistent over all angles tested, showing that
the position of light sources is of little influence, as evidenced by
the low values of u shown on the right side of Table 2. We therefore
conclude that the error we make by computing the caustic with re-
spect to the viewpoint, rather than with respect to the light source,
does not impair our ability to generate a plausible caustic.

Finally, as complicated geometries lead to larger differences in
preference ratings, we carried out a significance test of score dif-
ferences, which allows us to assess which algorithms belong to the
same group. Two algorithms belong to different groups if the dif-
ference in scores R is below �Rc�. Thus, we would like to compute

Skull:
Vertebrae:
Dolphin:
Bull:

K  PM  R
K  PM  R
K  PM  R
K  PM  R

K
PM
R

= Kovesi Phase Symmetry
= Photon Mapping
= Revolution Method

Table 3: Grouping of algorithms per scene.

Rc such that:
P(R ≥ �Rc�) ≤ α (4)

where α is the significance level. It can be shown that in the limit
R will be identical to the distribution of the range Wt,α of a set of t
normally distributed random variables with variance σ = 1 [David
1988]. This enables us to compute Rc using [Setyawan and La-
gendijk 2004; Ledda et al. 2005]:

P
(
Wt,α ≥ (2Rc −0.5)/

√
nt
)

(5)

where n is the number of participants (44 in our case) and t is the
number of algorithms we compare (t = 3). The value of Wt,α can
be interpolated from tables provided by Pearson and Hartley [1966].
For α = 0.01, we find that W3,0.01 ≈ 4.125, so that �Rc� = 24. The
resulting groupings per scene are given in Table 3. At the 0.01
confidence level, our algorithm is always in the same group as the
photon mapping approach, and can therefore not be distinguished
from the ground truth. For simple geometric shapes this is true also
for the method which revolves the silhouette. However, for more
complex geometries, this technique is too simple and is reliably
distinguished from the ground truth. We therefore conclude that in
cases where true 3D geometry is unavailable, our phase symmetry
approach can be effectively employed.

This experiment provides insight into our algorithm as compared
with a full 3D simulation, showing that the results are visually
equivalent. Moreover, for complex geometry an obvious simpler
approach falls short, whereas the phase symmetry algorithm con-
tinues to produce plausible caustics.

5.2 Experiment 2: Validation against Direct Paint-
ing

In addition to assessing the performance of our algorithm with
respect to 3D rendering, which establishes a ground truth, we are
interested whether direct painting using an image editing program
(such as Adobe PhotoshopTM) would produce visually comparable
results. We expect that the success of direct painting depends on
the skill of the artist, as well as the amount of time expended to
generate the image.

We therefore asked five digital artists with different backgrounds
and styles to paint caustics in two images which were manipu-
lated to create transparency without caustics using Khan et al’s
method [2006]. One image has a highly symmetric object (a vase)
which presumably would yield a symmetric caustic that may be
predicted more easily. The other contains an asymmetric object (an
elephant figurine) which would produce more complicated caustics.
Some of the results are shown in Figure 13, whereas the output of
our algorithm is given in Figure 8. One of the artists failed to deliver
the vase image. Each of the eleven resulting images was printed us-
ing a professional sublimation printer at 20×15 cm.

Each participant was informed that the only variation between
each set of images were the caustics, and was asked to order the
images from more to less real (from 1 to 5 in the vase image; 1 to
6 in the elephant image), according to his or her own standards. No
previous training was performed, other than an explanation of what
caustics are. The order of the images was randomized within each
set for each subject.



Figure 12: The complete set of stimuli for the skull and bull objects. Columns A, B and C show the results of our algorithm, photon mapping
and the alternative algorithm respectively. Rows indicate light position (degrees) w.r.t the camera. Details are given in the text.

Figure 13: Detail of the some of the artists’ depictions of the caus-
tics for the vases and elephant images (images 1, 2 and 4 for the
vases; 2, 3 and 4 for the elephant, as numbered in the tests).

Since our goal is to determine if our algorithm produces results
comparable to what can be achieved by using image-editing soft-
ware, rank data is sufficient for our analysis. Figure 14 shows mean
rankings for all the images in each series (lower ranking means
higher perceived realism) with p < 0.05. Our algorithm performed
slightly better than the best of the artists images in the case of the
vase series, and significantly better in the elephant series.

Tables 4 and 5 show normal fit data for all images. Our algorithm
has the lowest mean (higher perceived realism) of all the tested im-
ages. The artists had no time limitations to paint the caustics. They
ended up spending between five and fifty minutes to produce the
images, while our algorithm runs in approximately two minutes for
the images shown in this paper. We therefore conclude that our
algorithm produces results significantly faster than an artist, while
obviating the need for skilled input. Moreover, our results are per-
ceived to be more realistic than artists’ best efforts.
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Figure 14: Mean intervals for all the images in the vase and elephant
series, along with the 0.95 confidence interval.

Image 1 2 3 4 A
Mean 3.759 1.931 4.701 2.931 1.828
StDev 0.939 1.021 0.733 0.860 0.865

Table 4: Normal fit data (vase series).

Image 1 2 3 4 5 A
Mean 4.149 2.747 2.851 3.632 5.471 2.356
StDev 1.402 1.527 1.186 1.313 1.087 1.329

Table 5: Normal fit data (elephant series).

6 Conclusions

In this paper we have demonstrated the feasibility of render-
ing perceptually plausible caustics into existing images. We have
shown that although humans find it easy to detect the presence of
caustics, they are much less adept at predicting the shape of caus-
tics. We have leveraged this feature of human vision to produce an
image editing tool that enables, for the first time, aspects of global
illumination to be simulated on the basis of a single photograph.
There are several advantages to this approach. First, the required



user input is unskilled, making the algorithm straightforward to ap-
ply. Second, the results are at least on a par with those produced
by skilled artists, as evidenced by the second validation study re-
ported in this paper. Third, the time required to render a caustic is
only a fraction of the time that a skilled artist would need to paint
over all pixels. Our approach could potentially be used in combi-
nation with a traditional 3D rendering algorithm, avoiding the need
to compute costly caustics and approximating them in image-space.
Accurate object depth could be used instead of shape-from-shading
information.

Extending this work to video is also possible. For the simplest
case of camera movement only, the caustics shape is not expected
to change, given that the light is fixed with respect to the object.
The projected caustics map for the first frame simply needs to be
tracked over successive frames. For more general dynamic scenes
with moving objects and/or lights, we can leverage the fact that
the shape from shading approach used (from which phase symme-
tries are obtained) does not introduce temporal artifacts [Khan et al.
2006].
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A Phase symmetry

The phase symmetry algorithm is based on a log Gabor filter
bank. We present the phase symmetry algorithm in 1D first, and
then show how it is applied to the 2D signal. In 1D, a signal D(x) is
convolved by even-symmetric (cosine) wavelet filters Me

n and odd-
symmetric (sine) wavelet filters Mo

n which operate at scale n. The
even-symmetric and odd-symmetric responses to such a quadra-
ture pair of filters at scale n is given by en(x) and on(x) respec-
tively [Kovesi 1999]:

(en(x), on(x)) = (D(x)⊗Me
n , D(x)⊗Mo

n ) (6)

where ⊗ denotes a convolution. Wavelets have a limited spatial
extent, which is determined by the chosen scale n. A filter bank
analyzing different frequencies can therefore be constructed by re-
peating this computation for different scales. The en(x) and on(x)

values represent the real and imaginary components of the local fre-
quencies present in the signal around the location of interest x. The
amplitude An(x) and phase Θn(x) are then given by2:

An(x) =
√

e2
n(x)+o2

n(x) (7a)

Θn(x) = tan−1
(

en(x)
on(x)

)
(7b)

Given that symmetry appears as large absolute values of the
even-symmetric filter and small absolute values of the odd-
symmetric filter, we can subtract both values and produce a
weighted average to combine information over multiple scales.
This measure of symmetry S(x) corresponds to [Kovesi 1997]:

S(x) =
∑
n

An(x)(|cos(Θn(x))|− |sin(Θn(x))|)−T �

∑
n

An(x)+ ε
(8)

Here, ε is a small constant to avoid division by zero (we use 0.01),
and T is an estimate of the signal noise, and is included to remove
spurious responses. This estimate can be computed by first consid-
ering the energy vector E(x):

E(x) =

√(
∑
n

en(x)
)2

+
(

∑
n

on(x)
)2

(9)

Assuming that the noise has a Gaussian distribution with ran-
dom phase and a standard deviation of σG, then it can be shown
that the noise distribution of the magnitude of the energy vector
has a Rayleigh distribution with mean μR and variance σ2

R given
by [Kovesi 1999]:

μR = σG

√
π
2

(10a)

σ2
R =

4−π
2

σ2
G (10b)

With a scale factor k chosen to be 2 or 3, a good value for T is then:

T = μR +k σR (11)

The one-dimensional symmetry computation S(x) can be extended
to two dimensions by repeating (8) for different directions in the
frequency domain. Using polar coordinates, the filter in the radial
direction is given by S(x), whereas in the angular direction θ filters
G(θ ) with Gaussian cross-sections are chosen:

G(θ ) = exp

(
− (θ −θ0)

2

2σ2
θ

)
(12)

Here, θ0 is the orientation angle of the filter, and σθ is the standard
deviation chosen for the Gaussian filter. In addition to summing
over all scales, we now have to sum over all orientations θi as well,
yielding equation (1a).

2Note that to determine in which quadrant Θn(x) lies, it is effectively
computed with atan2().


