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Abstract

Glasses-free automultiscopic displays are on the verge of becoming a standard technology in consumer products. These displays
are capable of producing the illusion of 3D content without the need of any additional eyewear. However, due to limitations in
angular resolution, they can only show a limited depth of field, which translates into blurred-out areas whenever an object extrudes
beyond a certain depth. Moreover, the blurring is device-specific, due to the different constraints of each display. We introduce a
novel display-adaptive light field retargeting method, to provide high-quality, blur-free viewing experiences of the same content on
a variety of display types, ranging from hand-held devices to movie theaters. We pose the problem as an optimization, which aims
at modifying the original light field so that the displayed content appears sharp while preserving the original perception of depth.
In particular, we run the optimization on the central view and use warping to synthesize the rest of the light field. We validate our
method using existing objective metrics for both image quality (blur) and perceived depth. The proposed framework can also be
applied to retargeting disparities in stereoscopic image displays, supporting both dichotomous and non-dichotomous comfort zones.

Keywords: stereo, displays, automultiscopic, content retargeting.

1. Introduction1

Within the last years, stereoscopic and automultiscopic dis-2

plays have started to enter the consumer market from all an-3

gles. These displays can show three-dimensional objects that4

appear to be floating in front of or behind the physical screen,5

even without the use of additional eyewear. Capable of elec-6

tronically switching between a full-resolution 2D and a lower-7

resolution 3D mode, parallax barrier technology [1] is dominant8

for hand-held and tablet-sized devices, while medium-sized dis-9

plays most often employ arrays of microlenses [2]. Although10

most cinema screens today are stereoscopic and rely on addi-11

tional eyewear, large-scale automultiscopic projection systems12

are an emerging technology [3]. Each technology has its own13

particular characteristics, including field of view, depth of field,14

contrast, resolution, and screen size. Counterintuitively, pro-15

duced content is usually targeted toward a single display con-16

figuration, making labor-intense, manual post-processing of the17

recorded or rendered data necessary.18

19

Display-adaptive content retargeting is common practice for20

attributes such as image size, dynamic range (tone mapping),21

color gamut, and spatial resolution [4]. In order to counteract22

the accommodation-convergence mismatch of stereoscopic dis-23

plays, stereoscopic disparity retargeting methods have recently24

been explored [5, 6, 7, 8, 9]. These techniques are success-25

ful in modifying the disparities of a stereo image pair so that26

visual discomfort of the observer is mitigated while preserv-27

ing the three-dimensional appearance of the scene as much as28

possible. Inspired by these techniques, we tackle the problem29

of 3D content retargeting for glasses-free light field (i.e. auto-30

multiscopic) displays. These displays exhibit a device-specific31

Figure 1: Our 3D content retargeting for a glasses-free lenticular display. Due
to the limited depth of field of all light field displays, some objects in a 3D scene
will appear blurred. Our remapping approach selectively fits the 3D content
into the depth budget of the display, while preserving the perceived depth of the
original scene. Top: actual photographs of the original and retargeted scenes, as
seen on a Toshiba GL1 lenticular display. Notice the improvement in the blue
bird or the legs of the green bird in the retargeted version. Middle: close-ups.
Bottom: original and retargeted depths yielded by our method.

depth of field (DOF) that is governed by their limited angular32

resolution [10, 11]. Due to the fact that most light field dis-33

plays only provide a low angular resolution, that is the number34

of viewing zones, the supported DOF is so shallow that virtual35
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Figure 2: Simulated views of the three-birds scene for three different displays. From left to right: Holografika HoloVizio C80 movie screen, desktop and cell phone
displays. The last two displays fail to reproduce it properly, due to their intrinsic depth-of-field limitations. The insets plot the depth vs. cut-off frequency charts for
each display.

3D objects extruding from the physical display enclosure ap-36

pear blurred out (see Figs. 1, left, and 2 for a real photograph37

and a simulation showing the effect, respectively). We propose38

here a framework that remaps the disparities in a 3D scene to39

fit the DOF constraints of a target display by means of an opti-40

mization scheme that leverages perceptual models of the human41

visual system. Our optimization approach runs on the central42

view of an input light field and uses warping to synthesize the43

rest of the views.44

45

Contributions. Our nonlinear optimization framework for46

3D content retargeting specifically provides the following con-47

tributions:48

• We propose a solution to handle the intrinsic trade-off49

between the spatial frequency that can be shown and the50

perceived depth of a given scene. This is a fundamental51

limitation of automultiscopic displays (see Section 3).52

• We combine exact formulations of display-specific depth53

of field limitations with models of human perception, to54

find an optimized solution. In particular, we consider the55

frequency-dependent sensitivity to contrast of the human56

visual system, and the sensitivity to binocular disparity.57

Based on this combination, a first objective term min-58

imizes the perceived luminance and contrast difference59

between the original and the displayed scene, effectively60

minimizing DOF blur, while a second term strives to pre-61

serve the perceived depth.62

• We validate our results with existing state-of-the-art, ob-63

jective metrics for both image quality and perceived depth.64

• We show how our framework can be easily extended to65

the particular case of stereoscopic disparity, thus demon-66

strating its versatility.67

• For this extension, we account for a non-dichotomous68

zone of viewing comfort which constitutes a more ac-69

curate model of discomfort associated with the viewing70

experience.71

As a result of our algorithm, the depth of a given 3D scene72

is modified to fit the DOF constraints imposed by the target73

display, while preserving the perceived 3D appearance and the74

desired 2D image fidelity (Figure 1, right).75

76

Limitations. We do not aim at providing an accurate model77

of the behavior of the human visual system; investigating all78

the complex interactions between its individual components re-79

mains an open problem as well, largely studied by both psy-80

chologists and physiologists. Instead, we rely on existing com-81

putational models of human perception and apply them to the82

specific application of 3D content retargeting. For this purpose,83

we currently consider sensitivities to luminance contrast and84

depth, but only approximate the complex interaction between85

these cues using a heuristic linear blending, which works well86

in our particular setting. Using the contrast sensitivity func-87

tion in our context (Section 4) is a convenient but conservative88

choice. Finally, depth perception from motion parallax exhibits89

strong similarities in terms of sensitivity with that of binocu-90

lar disparity, suggesting a close relationship between both [12];91

but existing studies on sensitivity to motion parallax are not as92

exhaustive as those on binocular disparity, and therefore a reli-93

able model cannot be derived yet. Moreover, some studies have94

shown that, while both cues are effective, stereopsis is more rel-95

evant by an order of magnitude [13]. In any case, our approach96

is general enough so that as studies on these and other cues ad-97

vance and new, more sophisticated models of human perception98

become available, they could be incorporated to our framework.99

2. Related Work100

Glasses-free 3D displays were invented more than a cen-101

tury ago, but even today, the two dominating technologies are102

parallax barriers [1] and integral imaging [2]. Nowadays, the103

palette of existing 3D display technologies, however, is much104

larger and includes holograms, volumetric displays, multilayer105

displays and directional backlighting among many others. State106

of the art reviews of conventional stereoscopic and automul-107

tiscopic displays [14] and computational displays [15] can be108

found in the literature. With the widespread use of stereoscopic109

image capture and displays, optimal acquisition parameters and110

capture systems [16, 17, 18, 19, 20], editing tools [21, 22],111

and spatial resolution retargeting algorithms for light fields [23]112
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have recently emerged. In this paper, we deal with the prob-113

lem of depth remapping of light field information to the specific114

constraints of each display.115

116

Generally speaking, content remapping is a standard ap-117

proach to adapt spatial and temporal resolution, contrast, col-118

ors, and sizes of images to a display having limited capabilities119

in any of these dimensions [4]. For the particular case of dispar-120

ity remapping, Lang et al. [6] define a set of non-linear disparity121

remapping operators, and propose a new stereoscopic warping122

technique for the generation of the remapped stereo pairs. A123

metric to assess the magnitude of perceived changes in binocu-124

lar disparity is introduced by Didyk et al. [8], who also inves-125

tigate the use of the Cornsweet illusion to enhance perceived126

depth [24]. Recently, the original disparity metric has been fur-127

ther refined including the effect of luminance-contrast [9]. Kim128

and colleagues [7] develop a a novel framework for flexible ma-129

nipulation of binocular parallax, where a new stereo pair is cre-130

ated from two non-linear cuts of the EPI volume corresponding131

to multi-perspective images [25]. Inspired by Lang and col-132

leagues [6], they explore linear and non-linear global remap-133

ping functions, and also non-linear disparity gradient compres-134

sion. Here we focus on a remapping function that incorporates135

the specific depth of field limitations of the target display [26].136

Section 8 provides direct comparisons with some of these ap-137

proaches.138

3. Display-specific Depth of Field Limitations139

Automultiscopic displays are successful in creating convinc-140

ing illusions of three-dimensional objects floating in front and141

behind physical display enclosures without the observer having142

to wear specialized glasses. Unfortunately, all such displays143

have a limited depth of field which, just as in wide-aperture144

photography, significantly blurs out-of-focus objects. The fo-145

cal plane for 3D displays is directly on the physical device.146

Display-specific depth of field expressions have been derived147

for parallax barrier and lenslet-based systems [10], multilayer148

displays [11], and directional backlit displays [27]. In order to149

display an aliasing-free light field with any such device, four-150

dimensional spatio-angular pre-filters need to be applied before151

computing the display-specific patterns necessary to synthesize152

a light field, either by means of sampling or optimization. In153

practice, these filters model the depth-dependent blur of the in-154

dividual displays and are described by a depth of field blur ap-155

plied to the target light field. Intuitively, this approach fits the156

content into the DOF of the displays by blurring it as necessary.157

Figure 3 illustrates the supported depth of field of various auto-158

multiscopic displays for different display sizes.159

160

Specifically, the depth of field of a display is modeled as the161

maximum spatial frequency fξ of a diffuse plane at a distance162

d0 to the physical display enclosure. As shown by previous163

works [10, 11], the DOF of parallax barrier and lenslet-based164

displays is given by165

Figure 3: Depth of field for different display architectures and target displays.
From left to right: cell phone (p = 0.09mm, vD = 0.35m); desktop computer
(p = 0.33mm, vD = 0.5m); and widescreen TV (p = 0.53mm, vD = 2.5m). For
comparison purposes all depths of field are modeled for seven angular views.

∣∣∣ fξ ∣∣∣ ≤  f0
Na
, f or |d0| + (h/2) ≤ Nah

( h
(h/2)+|d0 |

) f0, otherwise
, (1)

where Na is the number of angular views, d0 is the distance166

to the front plane of the display (i.e. the parallax barrier or167

lenslet array plane), h represents the thickness of the display,168

f0 = 1/(2p), and p is the size of the view-dependent subpixels169

of the back layer of the display, making the maximum resolu-170

tion of the display at the front surface fξ = f0/Na = 1/(2pNa).171

For multilayered displays, the upper bound on the depth of field172

for a display of N layers was derived by Wetzstein et al. [11] to173

be174

∣∣∣ fξ ∣∣∣ ≤ N f0

√
(N + 1)h2

(N + 1)h2 + 12(N − 1)d2
0

. (2)

Note that in this case d0 represents the distance to the middle of175

the display, and p the pixel size of the layers.176

177

It can be seen how depth of field depends on display pa-178

rameters such as pixel size p, number of viewing zones Na,179

device thickness h, and number of layers N (for multilayer dis-180

plays), and thus varies significantly for different displays. It181

also depends on the viewing distance vD when expressed in cy-182

cles per degree. The above expressions can then be employed183

to predict an image displayed on a particular architecture, in-184

cluding loss of contrast and blur. Figure 2 shows three sim-185

ulated views of the three-birds scene for three different dis-186

plays: a Holografika HoloVizio C80 movie screen (h = 100mm,187

p = 0.765mm, vD = 6m), a Toshiba automultiscopic monitor188

(h = 20, p = 0.33, vD = 1.5) and a cell-phone-sized display189

(h = 6, p = 0.09, vD = 0.35). The scene can be represented190

in the large movie screen without blurring artifacts (left); how-191

ever, when displayed on a desktop display (middle), some areas192

appear blurred due to the depth-of-field limitations described193

above (see the blue bird). When seen on a cell-phone display194

(right), where the limitations are more severe, the whole scene195

appears badly blurred. In the following, we show how these196

predictions are used to optimize the perceived appearance of197

a presented scene in terms of image sharpness and contrast,198

where the particular parameters of the targeted display are an199

input to our method.200
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4. Optimization Framework201

In order to mitigate display-specific DOF blur artifacts, we202

propose to scale the original scene into the provided depth bud-203

get while preserving the perceived 3D appearance as best as204

possible. As detailed in Section 3, this is not trivial, since there205

is an intrinsic trade-off between the two goals. We formulate206

this as a multi objective optimization problem, with our objec-207

tive function made up of two terms. The first one minimizes208

the perceived luminance and contrast difference between the209

original and the displayed scene, for which display-specific ex-210

pressions of the displayable frequencies are combined with a211

perceptual model of contrast sensitivity. The second term pe-212

nalizes loss in perceived depth, for which we leverage disparity213

sensitivity metrics. Intuitively, the disparity term prevents the214

algorithm from yielding the obvious solution where the whole215

scene is flattened onto the display screen; this would guarantee216

perfect focus at the cost of losing any sensation of depth. The217

input to our algorithm is the depth map and the luminance im-218

age of the central view of the original light field, which we term219

dorig and Lorig, respectively. The output is a retargeted depth220

map d, which is subsequently used to synthesize the retargeted221

light field.222

223

Optimizing luminance and contrast: We model the display-
specific frequency limitations by introducing spatially-varying,
depth-dependent convolution kernels k(d). They are defined as
Gaussian kernels whose standard deviation σ is such that fre-
quencies above the cut-off frequency at a certain depth fξ(d)
are reduced to less than 5% of its original magnitude. Al-
though more accurate image formation models for defocus blur
in scenes with occlusions can be found in the literature [28],
their use is impractical in our optimization scenario, and we
found the Gaussian spatially-varying kernels to give good re-
sults in practice. Kernels are normalized so as not to modify
the total energy during convolution. As such, the kernel for a
pixel i is:

k(d) =
exp(− x2

i +y2
i

2(σ(d))2 )∑K
j

(
exp(−

x2
j +y2

j

2(σ(d))2 )
) (3)

where K is its number of pixels. The standard deviation σ is
computed as:

σ(d) =

√
−2log(0.05)
2πp fξ(d)

(4)

with p being the pixel size in mm/pixel.224

225

To take into account how frequency changes are perceived
by a human observer, we rely on the fact that the visual sys-
tem is more sensitive to near-threshold changes in contrast and
less sensitive at high contrast levels [29]. We adopt a conserva-
tive approach and employ sensitivities at near-threshold levels
as defined by the contrast sensitivity function (CSF). We follow
the expression for contrast sensitivities ωCS F proposed by Man-
tiuk et al. [30], which in turn builds on the model proposed by

Barten [31]:

ωCS F (l, fl) = p4sA(l)
MT F( fl)√

(1 + (p1 fl)p2 )(1 − e−( fl/7)2 )−p3

, (5)

where l is the adapting luminance in [cd/m2], fl represents the
spatial frequency of the luminance signal in [cpd] and pi are the
fitted parameters provided in Mantiuk’s paper1. MT F (modu-
lation transfer function) and sA represent the optical and the
luminance-based components respectively, and are given by:

MT F( fl) =
∑

k=1..4

ake−bk fl (6)

sA(l) = p5

(( p6

l

)p7

+ 1
)−p8

(7)

where ak and bk can again be found in the original paper. Fig-226

ure 4 (left) shows contrast sensitivity functions for varying adap-227

tation luminances, as described by Equations 5-7. In our con-228

text we deal with complex images, as opposed to a uniform229

field; we thus use the steerable pyramid [32] ρS (·) to decom-230

pose a luminance image into a multi-scale frequency represen-231

tation. The steerable pyramid is chosen over other commonly232

used types of decomposition (e.g. Cortex Transform) since it233

is mostly free of ringing artifacts that can cause false masking234

signals [30].235

236

Taking into account both the display-specific frequency lim-
itations and the HVS response to contrast, we have the follow-
ing final expression for the first term of our optimization:∥∥∥∥ωCS F

(
ρS

(
Lorig

)
− ρS

(
φb

(
Lorig, d

)))∥∥∥∥2

2
, (8)

where ωCS F , defined by Equation 5, are frequency-dependent237

weighting factors, and the operator φb (L, d) = k(d) ∗ L models238

the display-specific, depth-dependent blur (see Section 3 and239

Figure 3). Note that we omit the dependency of ωCS F on (l, fl)240

for clarity. Figure 5 (left) shows representative weights ωCS F241

for different spatial frequency luminance levels of the pyramid242

for a sample scene.243

244

Preserving perceived depth: This term penalizes the per-
ceived difference in depth between target and retargeted scene
using disparity sensitivity metrics. As noted by different re-
searchers, the effect of binocular disparity in the perception of
depth works in a manner similar to the effect of contrast in the
perception of luminance [8, 33, 34]. In particular, our ability to
detect and discriminate depth from binocular disparity depends
on the frequency and amplitude of the disparity signal. Human
sensitivity to binocular disparity is given by the following equa-
tion [8] (see also Figure 4, right):

ωBD (a, f ) = (0.4223 + 0.007576a + 0.5593log10( f ) (9)

+ 0.03742alog10( f ) + 0.0005623a2 + 0.7114log2
10( f ))−1

1sourceforge.net/apps/mediawiki/hdrvdp/
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Figure 4: Thresholds and sensitivity values from which the weights for our
optimization are drawn. Left: Contrast sensitivity functions. Right: Binocular
disparity discrimination thresholds (thresholds are the inverse of sensitivities).

where frequency f is expressed in [cpd], a is the amplitude in245

[arcmin], and ωBD is the sensitivity in [arcmin−1]. In a sim-246

ilar way to ωCS F in Equation 8, the weights ωBD account for247

our sensitivity to disparity amplitude and frequency. Given this248

dependency on frequency, the need for a multi-scale decom-249

position of image disparities arises again, for which we use a250

Laplacian pyramid ρL (·) for efficiency reasons, following the251

proposal by Didyk et al. [8]. Figure 5 (right), shows represen-252

tative weights ωBD.253

254

The error in perceived depth incorporating these sensitivi-
ties is then modeled with the following term:∥∥∥∥ωBD

(
ρL

(
φυ

(
dorig

))
− ρL (φυ (d))

)∥∥∥∥2

2
. (10)

255

256

Given the viewing distance vD and interaxial distance e, the257

operator φυ (·) converts depth into vergence as follows:258

φυ (d) = acos
(

vL · vR

‖vL‖ ‖vR‖

)
, (11)

where vectors vL and vR are illustrated in Figure 6. The Lapla-259

cian decomposition transforms this vergence into frequency-260

dependent disparity levels.261

262

Objective function: Our final objective function is a com-
bination of Equations 8 and 10:

arg min
d

(
µDOF

∥∥∥∥ωCS F

(
ρS

(
Lorig

)
− ρS

(
φb

(
Lorig, d

)))∥∥∥∥2

2

+µD

∥∥∥∥ωBD

(
ρL

(
φυ

(
dorig

))
− ρL (φυ (d))

)∥∥∥∥2

2

)
. (12)

For multilayer displays, we empirically set the values of µDOF =263

10 and µD = 0.003, while for conventional displays µD =264

0.0003 due to the different depth of field expressions.265

5. Implementation Details266

We employ a large-scale trust region method [35] to solve267

Equation 12. This requires finding the expressions for the an-268

alytic gradients of the objective function used to compute the269

Figure 5: Left: Weights ωCS F (contrast sensitivity values) for different lumi-
nance spatial frequency levels for a sample scene (birds). Right: Weights ωBD
(inverse of discrimination threshold values) for different disparity spatial fre-
quency levels for the same scene.

Figure 6: Computing vergence values. Vergence νP of a point P depends on
its position, the viewing distance vD and the interaxial e. The corresponding
disparity for P is (νP−νF ). vd refers to the viewing distance and dP is the depth
of point P.

Jacobian, which can be found in Annex A. The objective term270

in Equation 8 models a single view of the light field, i.e. the271

central view, in a display-specific field of view (FOV). Within272

a moderate FOV, as provided by commercially-available dis-273

plays, this is a reasonable approximation; we obtain the rest of274

the light field by warping. In the following, we describe this275

and other additional implementation details.276

277

Sensitivity weights and target values: The weights used278

in the different terms,ωCS F andωBD are pre-computed based on279

the values of the original depth and luminance, dorig and Lorig.280

The transformation from dorig to vergence, its pyramid decom-281

position and the decomposition of Lorig are also pre-computed.282

283

Contrast sensitivity function: As reported by Mantiuk et284

al. [30], no suitable data exists to separate L- and M-cone sen-285

sitivity. Following their approach, we rely on the achromatic286

CSF using only luminance values.287

288

Depth-of-field simulation: The depth-dependent image blur289

of automultiscopic displays is modeled as a spatially-varying290

convolution in each iteration of the optimization procedure. Due291

to limited computational resources, we approximate this expen-292

sive operation as a blend between multiple shift-invariant con-293

volutions corresponding to a quantized depth map, making the294

process much more efficient. For all scenes shown in this paper,295

we use nc = 20 quantized depth clusters.296

297

Warping: View warping is orthogonal to the proposed re-298

targeting approach; we implement here the method described299

by Didyk et al. [36], although other methods could be em-300
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ployed instead ( [7, 37, 38]). To reduce warping artifacts due301

to large depth gradients at the limits of the field of view for302

each light field, we median-filter the depth and constrain depth303

values around the edges.304

6. Retargeting for Stereoscopic Displays305

One of the advantages of our framework is its versatility,306

which allows to adapt it for display-specific disparity remap-307

ping of stereo pairs. We simply drop the depth of field term308

from Equation 12, and incorporate a new term that models the309

comfort zone. This is an area around the screen within which310

the 3D content does not create fatigue or discomfort in the311

viewer in stereoscopic displays, and is usually considered as a312

dichotomous subset of the fusional area. Although any comfort-313

zone model could be directly plugged into our framework, we314

incorporate the more accurate, non-dichotomous model sug-315

gested by Shibata et al. [39]. This model provides a more ac-316

curate description of its underlying psychological and physio-317

logical effects. Additionally, this zone of comfort depends on318

the viewing distance vD, resulting on different expressions for319

different displays, as shown in Figure 7. Please refer to Annex320

B for details on how to incorporate the simpler, but less precise,321

dichotomous model.322

323

Our objective function thus becomes:∥∥∥∥ωBD

(
ρL

(
φυ

(
Dorig

))
− ρL (φυ (d))

)∥∥∥∥2

2
+ µCZ ‖ϕ (d)‖22 , (13)

where ϕ (·) is a function mapping depth values to visual dis-
comfort:

ϕ(d) =

{
1 − s f ar

vD−d − T f ar for d < 0
1 − snear

vD−d − Tnear for d ≥ 0 (14)

where vD is the distance from the viewer to the central plane of324

the screen and s f ar, snear, T f ar, and Tnear are values obtained in325

a user study carried out with 24 subjects.326

Figure 7: Dichotomous (blue) and non-dichotomous (orange) zones of comfort
for different devices. From left to right: cell phone (vD = 0.35m), desktop
computer (vD = 0.5m) and wide-screen TV (vD = 2.5m).

7. Results327

We have implemented the proposed algorithm for differ-328

ent types of automultiscopic displays including a commercial329

Toshiba GL1 lenticular-based display providing horizontal-only330

parallax with nine discrete viewing zones, and custom multi-331

layer displays. The Toshiba panel has a native resolution of332

3840 × 2400 pixels with a specially engineered subpixel struc-333

ture that results in a resolution of 1280 × 800 pixels for each of334

the nine views. Note that even a highly-engineered device such335

as this suffers from a narrow depth of field due to the limited336

angular sampling. We consider a viewing distance of 1.5 m for337

the Toshiba display and 0.5 m for the multilayer prototypes.338

339

Figures 1 and 8 show results of our algorithm for the Toshiba340

display. The target scenes have been originally rendered as light341

fields with a resolution of 9 × 9, with a field of view of 10◦.342

Since the Toshiba display only supports horizontal parallax, we343

only use the nine horizontal views for these examples. Note344

how depth is compressed to fit the display’s constraints in those345

areas with visible loss of contrast due to blur (blue bird or far346

away pins, for instance), while enhancing details to preserve the347

perceived depth; areas with no visible blur are left untouched348

(eyes of the green bird, for instance). This results into sharper349

retargeted scenes that can be shown within the limitations of the350

display. The remapping for the teaser image took two hours for351

a resolution of 1024×768, using our unoptimized Matlab code.352

353

We have also fabricated a prototype multilayer display (Fig-354

ure 9). This display is composed of five inkjet-printed trans-355

parency patterns spaced by clear acrylic sheets. The size of356

each layer is 60 × 45 mm, while each spacer has a thickness357

of 1/8”. The transparencies are conventional films for office358

use and the printer is an Epson Stylus Photo 2200. This mul-359

tilayer display supports 7 × 7 views within a field of view of360

7◦ for both horizontal and vertical parallax. The patterns are361

generated with the computed tomography solver provided by362

Wetzstein et al. [11]. Notice the significant sharpening of the363

blue bird and, to a lesser extent, of the red bird. It should be364

noted that these are lab prototypes: scattering, inter-reflections365

between the acrylic sheets, and imperfect color reproduction366

with the desktop inkjet printer influence the overall quality of367

the physical results. In Figure 10, we show sharper, simulated368

results for the dice scene for a similar multilayer display.369

370

We show additional results using more complex data sets,371

with varying degrees of depth and texture, and different object372

shapes and surface material properties. In particular, we use373

the Heidelberg light field archive2, which includes ground-truth374

depth information. The scenes are optimized for a three-layer375

multilayer display, similar to the one shown in Figure 9. They376

have been optimized for a viewing distance of 0.5 m and have377

resolutions ranging from 768× 768 to 1024× 720. The weights378

used in the optimization are again µDOF = 10 and µD = 0.003.379

Figure 11 shows the results for the papillon, buddha2 and statue380

data sets. Our algorithm recovers most of the high frequency381

content of the original scenes, lost by the physical limitations382

of the display. The anaglyph representations allow to compare383

the perceived depth of the original and the retargeted scenes384

2http://hci.iwr.uni-heidelberg.de/HCI/Research/

LightField/lf_archive.php
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Figure 8: Additional results for commercial lenticular display (actual photographs). Top row: depth map, perspective from left, and perspective from right for
original scene. Bottom row: depth map and similar perspectives for the retargeted scene. The slight double-view of some of the pins in the left view is due to
interview cross-talk in the Toshiba display.

(please refer to the supplementary material for larger versions385

to ensure proper visualization). Figure 12 shows additional386

views of the buddha2 and statue light fields.387

388

Figure 9: 3D content retargeting for multilayer light field displays (actual pho-
tographs). Even five attenuating layers (top) can only provide a limited depth
of field for a displayed scene (bottom left). Our retargeting algorithm maps the
multiview content into the provided depth budget (bottom right).

As shown in this section, our algorithm works well within a389

wide range of displays and data sets of different complexities.390

However, in areas of very high frequency content, the warp-391

ing step may accumulate errors which end up being visible in392

the extreme views of the light fields. Figure 13 shows this:393

the horses data set contains a background made up of a texture394

containing printed text. Although the details are successfully395

recovered by our algorithm, the warping step cannot deal with396

the extremely high frequency of the text, and the words appear397

broken and illegible.398

399

Finally, Figure 14 shows the result of applying our adapted400

model to the particular case of stereo retargeting, as described401

Figure 10: Results of simulations for a multilayer display (five layers). Top
row: initial and retargeted depth. Middle row: initial and retargeted luminance.
Bottom row: close-ups.

in Section 6.402

8. Comparison to Other Methods403

Our method is the first to specifically deal with the par-404

ticular limitations of automultiscopic displays (depth vs. blur405

trade-off), and thus it is difficult to directly compare with others.406

However, we can make use of two recently published objective407

computational metrics, to measure distortions both in the ob-408

served 2D image fidelity, and in the perception of depth. This409

also provides an objective background to compare against exist-410

ing approaches for stereoscopic disparity retargeting, for which411

7



Figure 11: Results for the papillon (top), buddha2 (middle) and statue (bottom) data sets from the Heidelberg light field archive. For each data set, the top row
shows the original scene, while the bottom row shows our retargeted result. From left to right: depth map, anaglyph representation, central view image, and selected
zoomed-in regions. Notice how our method recovers most of the high frequency details of the scenes, while preserving the sensation of depth (larger versions of
the anaglyphs appear in the supplementary material). Note: please wear anaglyph glasses with cyan filter on left and red filter on right eye; for an optimal viewing
experience please resize the anaglyph to about 10 cm wide in screen space and view it at a distance of 0.5 m.
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alternative methods do exist.412

413

Figure 12: Additional non-central views of the retargeted buddha2 and statue
light fields, with corresponding close-ups.

Figure 13: Results for the horses data set from the Heidelberg light field
archive. Very high frequencies that have been initially cut off by the display
(green box) are successfully recovered by our algorithm (pink). However, sub-
sequent warping can introduce visible artifacts in those cases, which progres-
sively increase as we depart from the central view of the light field. This pro-
gression is shown in the bottom row (yellow boxes).

Metrics: We need to measure both observed 2D image414

quality and resulting degradations in perceived depth. For im-415

age quality, numerous metrics exist. We rely on the HDR-VDP416

2 calibration reports provided by Mantiuk and colleagues [30]417

in their website3 , where the authors compare quality predic-418

tions from six different metrics and two image databases: LIVE419

[40] and TID2008 [41]. According to the prediction errors, re-420

ported as Spearman’s correlation coefficient, multi-scale SSIM421

(MS-SSIM, [42]) performs best across both databases for the422

blurred image distortions observed in our application. The map-423

ping function we use, log(1−MS-SSIM), yields the highest cor-424

relation for Gaussian blur distortions.425

426

Fewer metrics exist to evaluate distortions in depth. We use427

the metric recently proposed by Didyk and colleagues to esti-428

mate the magnitude of the perceived disparity change between429

two stereo images [8]. The metric outputs a heat map of the dif-430

ferences between the original and the retargeted disparity maps431

3http://hdrvdp.sourceforge.net/reports/2.1/quality_live/ http://

hdrvdp.sourceforge.net/reports/2.1/quality_tid2008/

Figure 14: Retargeting for stereo content. Left column: Anaglyph and cor-
responding pixel disparity map of the original scene. For a common (around
0.5m) viewing distance on a desktop display, left and right images cannot be
fused. Right column: Anaglyph and corresponding pixel disparity map of the
retargeted scene. Images can now be fused without discomfort, and perception
of depth is still present despite the aggressive depth compression. Note that the
scales of the disparity maps are different for visualization purposes; the small
inset shows the retargeted disparity map for the same scale as the original. Note:
please wear anaglyph glasses with cyan filter on left and red filter on right eye;
for an optimal viewing experience please resize the anaglyph to about 10 cm
wide in screen space and view it at a distance of 0.5 m.

in Just Noticeable Difference (JND) units.432

433

Alternative Methods: There is a large space of linear and434

non-linear global remapping operators, as well as of local ap-435

proaches. Also, these operators can be made more sophisti-436

cated, for instance by incorporating information from saliency437

maps, or adding the temporal domain [6]. To provide some438

context to the results of the objective metrics, we compare our439

method with a representative subset of alternatives, including440

global operators, local operators, and a recent operator based441

on a perceptual model for disparity. In particular, we compare442

against six other results using different approaches for stereo443

retargeting: a linear scaling of pixel disparity (linear), a linear444

scaling followed by the addition of bounded Cornsweet pro-445

files at depth discontinuities (Cornsweet [24])4, a logarith-446

mic remapping (log, see e.g. [6]), and the recently proposed447

remapping of disparity in a perceptually linear space (perc. lin-448

ear [8]). For the last two, we present two results using different449

parameters. This selection of methods covers a wide range from450

very simple to more sophisticated.451

452

The linear scaling is straightforward to implement. For the
bounded Cornsweet profiles method, where profiles are care-
fully controlled so that they do not exceed the given disparity
bounds and create disturbing artifacts, we choose n = 5 levels
as suggested by the authors. For the logarithmic remapping, we

4In our tests, this consistently yielded better results than a naive applica-
tion of unbounded Cornsweet profiles, as originally reported by Didyk and col-
leagues [24]
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use the following expression, inspired by Lang et al. [6]:

δo = K · log(1 + s · δi), (15)

where δi and δo are the input and output pixel disparities, s is a453

parameter that controls the scaling and K is chosen so that the454

output pixel disparities fit inside the allowed range. We include455

results for s = 0.5 and s = 5. Finally, for the perceptually lin-456

ear method, disparity values are mapped via transducers into a457

perceptually linear space, and then linearly scaled by a factor k.458

The choice of k implies a trade-off between the improvement in459

contrast enhancement and how faithful to the original dispari-460

ties we want to remain. We choose k = 0.75 and k = 0.95 as461

good representative values for both options respectively.462

463

Comparisons: Some of the methods we compare against464

(linear, Cornsweet and log) require to explicitly define a min-465

imum spatial cut-off frequency, which will in turn fix a cer-466

tain target depth range. We run comparisons on different data467

sets and for a varied range of cut-off frequencies: For the birds468

scene, where the viewing distance is vD = 1.5 m, we test two469

cut-off frequencies: fcpmm = 0.12 cycles per mm ( fcpd = 3.14470

cycles per degree), and fcpmm = 0.19 ( fcpd = 5.03), the latter of471

which corresponds to remapping to the depth range which of-472

fers the maximum spatial resolution of the display (see DOF473

plots in Figure 16b). For the statue, papillon and buddha2474

scenes, optimized for a multilayer display with vD = 0.5 m,475

we set the frequencies to fcpmm = 0.4, 0.5 and 1.1, respectively476

(corresponding fcpd = 3.49, 4.36 and 9.60). The frequencies477

are chosen so that they yield a fair compromise between image478

quality and perceived depth, given the trade-off between these479

magnitudes; they vary across scenes due to the different spatial480

frequencies of the image content in the different data sets.481

482

Figure 15 shows a comparison to the results obtained with483

the other methods both in terms of image quality and of per-484

ceived depth for three different scenes from the Heidelberg data485

set (papillon, buddha2, and statue). Heat maps depict the er-486

ror in perceived depth (in JNDs) given by Didyk et al.’s metric.487

Visual inspection shows that our method consistently leads to488

less error in perceived depth (white areas mean error below the489

1 JND threshold). Close-ups correspond to zoomed-in regions490

from the resulting images obtained with each of the methods,491

where the amount of DOF blur can be observed (please refer492

to the supplementary material for the complete images). Our493

method systematically yields sharper images, even if it also pre-494

serves depth perception better. Only in one case, in the statue495

scene, perceptually linear remapping yields sharper results, but496

at the cost of a significantly higher error in depth perception, as497

the corresponding heat maps show.498

499

To better assess the quality of the deblurring of the retar-500

geted images, Figure 16a shows the MS-SSIM metric for the501

different methods averaged over the scenes tested, together with502

the associated standard error (we plot the absolute value of503

log(1 − MS-SSIM)). We have added the result of the original504

image, without any retargeting method applied (N for none in505

the chart). Our method yields the best perceived image quality506

(highest MS-SSIM value), and as shown in Figure15, the low-507

est error in depth perception as well. This can be intuitively ex-508

plained by the fact that our proposed multi-objective optimiza-509

tion (Eq. 12) explicitly optimizes both luminance and depth,510

whereas existing algorithms are either heuristic or take into ac-511

count only one of the two aspects.512

513

To further explore this image quality vs. depth percep-514

tion trade-off, we have run the comparisons for the birds scene515

for two different cut-off spatial frequencies. Figure 16b shows516

comparisons of all tested algorithms for the birds scene retar-517

geted for a lenslet-based display. For two of the methods, ours518

and the perceptually linear remapping (with k = 0.75 and k =519

0.95), defining this minimum spatial frequency is not necessary.520

Error in depth for these is shown in the top row. For the other521

four methods (linear, Cornsweet, log s = 0.5, log s = 5), the522

cut-off frequency needs to be explicitly defined: we set it to two523

different values of fcpmm = 0.12 and fcpmm = 0.19, which cor-524

respond to an intermediate value and to remapping the content525

to the maximum spatial frequency of the display, respectively.526

The resulting error in depth is shown in the middle and bottom527

rows of Figure 16b. Error in perceived depth clearly increases528

as the cut-off frequency is increased. The bar graph at the top529

left of Figure 16b shows image quality results for fcpmm = 0.12.530

Note that for fcpmm = 0.19, the methods linear, Cornsweet and531

log yield perfectly sharp images (since we explicitly chose that532

frequency to remap to the maximum resolution of the display),533

but at the cost of large errors in perceived depth.534

9. Conclusions and Future Work535

Automultiscopic displays are an emerging technology with536

form factors ranging from hand-held devices to movie theater537

screens. Commercially successful implementations, however,538

face major technological challenges, including limited depth of539

field, resolution, and contrast. We argue that compelling multi-540

view content will soon be widely available and tackle a crucial541

part of the multiview production pipeline: display-adaptive 3D542

content retargeting. Our computational depth retargeting algo-543

rithm extends the capabilities of existing glasses-free 3D dis-544

plays, and deals with a part of the content production pipeline545

that will become commonplace in the future.546

547

As shown in the paper, there is an inherent trade-off in auto-548

multiscopic displays between depth budget and displayed spa-549

tial frequencies (blur): depth has to be altered if spatial frequen-550

cies in luminance are to be recovered. This is not a limitation551

of our algorithm, but of the targeted hardware (Figure 3). Our552

algorithm aims at finding the best possible trade-off, so that the553

inevitable depth distortions introduced to improve image qual-554

ity have a minimal perceptual impact. Therefore, the amount555

of blur (the cut-off frequency) in the retargeted scene depends556

on the actual visibility of the blur in a particular area, according557

to the CSF. Should the user need to further control the amount558

of defocus deblurring, it could be added to the optimization in559

the form of constraints over the depth values according to the560
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Figure 15: Comparison against other methods for three different scenes from the Heidelberg light field archive. From top to bottom: papillon ( fcpmm = 0.4,
fcpd = 3.49), buddha2 ( fcpmm = 1.1, fcpd = 9.60), and statue ( fcpmm = 0.5, fcpd = 4.36). Errors in depth are shown as heat maps (lower is better) according to the
metric by Didyk and colleagues [8]; white areas correspond to differences below one JND. Viewing distance is 0.5 m.

Figure 16: (a) Comparison of average luminance quality (lack of blur) according to the MS-SSIM metric for all the data sets used in this comparisons (higher is
better). (b) Comparison against other methods for the birds scene, for two different cut-off frequencies. Top row, from left to right: resulting image quality as
predicted by MS-SSIM for fcpmm = 0.12, and error in depth for the two methods that do not require providing a target depth range. Middle row: error in depth for
the three methods requiring a target depth range, for a cut-off frequency fcpmm = 0.12 ( fcpd = 3.14). The smaller image represents the depth vs. cut-off frequency
function of the display, with the target depth range highlighted in yellow. Bottom row: same as middle row for a cut-off frequency fcpmm = 0.19 ( fcpd = 5.03),
corresponding to the maximum spatial frequency allowed by the display (flat region of the DOF function). Errors in depth are shown as heat maps (lower is better)
according to Didyk et al’s metric [8]; white areas correspond to differences below one JND. Note the intrinsic trade-off between image quality and depth perception
for the methods requiring a specific target depth range: when remapping to the maximum spatial frequency of the display, error in perceived depth significantly
increases. Viewing distance is 1.5 m.

corresponding DOF function.561

562

We have demonstrated significant improvements in sharp-563

ness and contrast of displayed images without compromising564
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the perceived three-dimensional appearance of the scene, as565

our results and validation with objective metrics show. For566

the special case of disparity retargeting in stereoscopic image567

pairs, our method is the first to handle display-specific non-568

dichotomous zones of comfort: these model the underlying phys-569

ical and physiological aspects of perception better than binary570

zones used in previous work. In the supplementary video, we571

also show an animated sequence for retargeted content. It is572

shown as an anaglyph, so it can be seen in 3D on a regular573

display. Although the frames of this video clip have been pro-574

cessed separately, our algorithm provides temporally stable re-575

targeting results.576

577

A complete model of depth perception remains an open578

problem. One of the main challenges is the large number of579

cues that our brain uses when processing visual information,580

along with their complex interactions [43, 44]. A possible av-581

enue of future work would be to extend the proposed optimiza-582

tion framework by including perceptual terms modeling human583

sensitivity to accommodation, temporal changes in displayed584

images, sensitivity of depth perception due to motion parallax585

or the interplay between different perceptual cues. However,586

this is not trivial and will require significant advances in related587

fields. Another interesting avenue of future work would be to588

extend our optimization framework to deal with all the views in589

the light field, thus exploiting angular resolution.590

591

We hope that our work will provide a foundation for the592

emerging multiview content production pipeline and inspire oth-593

ers to explore the close relationship between light field acquisi-594

tion, processing, and display limitations in novel yet unforeseen595

ways. We believe bringing the human visual system into the de-596

sign pipeline [45, 46] is a great avenue of future work to over-597

come current hardware limitations in all areas of the imaging598

pipeline, from capture to display.599
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Appendix A. Objective Function and Analytical Derivatives719

In this section we go through the mathematical expressions720

of the two terms of the objective function in detail. We also721

include their derivatives, necessary for computing the analytical722

Jacobian used in the optimization process.723

Appendix A.1. Term 1: Optimizing Luminance and Contrast724

This term, as shown in Equation (8) of the main text, has
the following form:

T1 = ωCS F

(
ρS

(
Lorig

)
− ρS

(
φb

(
Lorig, d

)))
(A.1)

Note that this expression yields a vector of length Npyr (Npyr725

being the number of pixels in the pyramid ρS

(
Lorig

)
or726

ρS

(
φb

(
Lorig, d

))
), which is a vector of differences with respect727

to the target luminance Lorig, weighted by contrast sensitivity728

values. This vector of errors thus contains the residuals that729

lsqnonlin optimizes for the depth of field term. The weight-730

ing factor µDOF is left out of this derivation for the sake of sim-731

plicity, since it is just a product by a constant both in the objec-732

tive function term and in its derivatives. This is valid also for733

the second term of the objective function.734

735

Since the multi-scale decomposition is a linear operation,
we can write:

T1 = ωCS F

(
MS · Lorig − MS · φb

(
Lorig, d

))
(A.2)

where MS is a matrix of size Npyr × Nim, Nim being the number
of pixels in the luminance image Lorig. Substituting the blurring
function φb (·, ·) by its actual expression

∂T1,i

∂d
= ωCS F,i

(
−MS ,i · (Lorig ∗

∂k(d)
∂d

)
)
, (A.3)

where MS ,i is the i− th row of MS . The derivative of the kernels
k(d) is:

∂k(d)
∂d

=

(
exp(− x2

i +y2
i

2(σ(d))2 )
) (

(x2
i +y2

i )4σ(d) ∂σ(d)
∂d

(2(σ(d))2)2

)∑K
j

[
exp(−

x2
j +y2

j

2(σ(d))2 )
]

(∑K
j

[
exp(−

x2
j +y2

j

2(σ(d))2 )
])2 −

(A.4)∑K
j

[(
exp(−

x2
j +y2

j

2(σ(d))2 )
) (

(x2
j +y2

j )4σ(d) ∂σ(d)
∂d

(2(σ(d))2)2

)] (
exp(− x2

i +y2
i

2(σ(d))2 )
)

(∑K
j

[
exp(−

x2
j +y2

j

2(σ(d))2 )
])2 .

The derivative of the standard deviation σ is straightforward,
knowing ∂( fξ(d))/∂d. As described in the main text, the expres-
sion for fξ(d) depends on the type of automultiscopic display.
For a conventional display [10]:

fξ(d) =

 f0
Na
, f or |d| + (h/2) ≤ Nah

( h
(h/2)+|d| ) f0, otherwise

, (A.5)

where Na is the number of angular views, h represents the thick-
ness of the display and fo = 1/(2p) is the spatial cut-off fre-
quency of a mask layer with a pixel of size p. For multilayered
displays, the upper bound on the depth of field for a display of
N layers is [11]:

fξ(d) = N f0

√
(N + 1)h2

(N + 1)h2 + 12(N − 1)d2 . (A.6)

The derivatives are as follows:

∂ fξ(d)
∂d

=

{
0, f or |d| + (h/2) ≤ Nah

( −hd/|d|
((h/2)+|d|)2 ) f0, otherwise (A.7)

for a conventional display and

∂ fξ(d)
∂d

= N f0
12
√

N + 1(N − 1)hd
((N + 1)h2 + 12(N − 1)d2)3/2 . (A.8)

for a multilayered display.736

Appendix A.2. Term 2: Preserving Perceived Depth737

This term, introduced in Equation 10 of the main text, is
modeled as follows:

T2 = ωBD

(
ρL

(
φυ

(
Dorig

))
− ρL (φυ (d))

)
(A.9)

Again, since the multi-scale decomposition is a linear opera-
tion, we write:

T2 = ωBD

(
ML · φυ

(
Dorig

)
− ML · φυ (d)

)
(A.10)

where ML is a matrix of size Ndpyr×Nd, Nd being the number of
pixels in the depth map Dorig. Taking the derivative with respect
to d yields the following expression for each element T2,i of the
residuals vector for this term:

∂T2,i

∂d
= ωBD,i

(
−ML,i ·

∂φυ (d)
∂d

)
, (A.11)
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where ML,i is the i − th row of ML. As explained in the main
text, φυ (d) converts depth dP of a point P into vergence νP.
This, given the viewing distance vD and the interaxial distance
e, is done using function φυ (·):

φυ (d) = acos
(

vL · vR

‖vL‖ ‖vR‖

)
, (A.12)

where vectors vL and vR have their origins in P and end in the
eyes (please also see Figure 6 in the main text). Placing the
coordinate origin in the center of the screen (z-axis normal to
the screen, x-axis in the horizontal direction) we can rewrite the
previous equation for a point P = (xi, yi, di) as:

νd = φυ (d) = acos
 κ
√
η
√
ζ

 , (A.13)

where:738

κ = (xL − xi)(xR − xi) + (vD − di)2,739

740

η = (xL − xi)2 + (vD − di)2,741

742

ζ = (xR − xi)2 + (vD − di)2.743

744

Finally, differentiating Equation A.13 with respect to depth:

∂φυ (d)
∂d

= −

1 −  κ
√
η
√
ζ

2−1/2

·

−2(vD − di)
√
η
√
ζ − κΨ(di)

ηζ


where Ψ(di) is as follows:745

Ψ(di) = −di(vD − di)η−1/2ζ1/2 − di(vD − di)ζ−1/2η1/2

Appendix B. A Dichotomous Zone of Comfort746

As explained in the paper, Equation B.1 describes our ob-
jective function for the simplified case of stereo remapping:∥∥∥∥ωBD

(
ρL

(
φυ

(
Dorig

))
− ρL (φυ (d))

)∥∥∥∥2

2
+ µCZ ‖ϕ (d)‖22 , (B.1)

where ϕ (·) is a function mapping depth values to visual discom-
fort. To incorporate a dichotomous model (such as those shown
in cyan in Figure 7 for different devices and viewing distances
vD), instead of the non-dichotomous model described in the pa-
per (shown in orange in the same figure), we can define a binary
indicator function, such as

ϕdc (d) =

{
0 for dmin

com f ort ≤ d ≤ dmax
com f ort

∞ otherwise
(B.2)

For a practical, numerically-robust implementation, a smooth
function that approximates Equation B.2 is preferable, ensuring
C1 continuity. Our choice for such a function is the Butterworth
function which is commonly used as a low-pass filter in signal
processing:

ϕb f (d) = 1 −

√
1

1 + (γd)2s (B.3)

where γ controls the position of the cut-off locations and s the747

slope of such cut-offs.748
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